
IDisposable Interface

This interface provides a mechanism for releasing unmanaged resources. The following example

demonstrates how to create a resource class that implements the IDisposable interface.

Example:

using System;
using System.ComponentModel;
// The following example demonstrates how to create
// a resource class that implements the IDisposable interface
// and the IDisposable.Dispose method.

public class DisposeExample
{
 // A base class that implements IDisposable.
 // By implementing IDisposable, you are announcing that
 // instances of this type allocate scarce resources.
 public class MyResource: IDisposable
 {
 // Pointer to an external unmanaged resource.
 private IntPtr handle;
 // Other managed resource this class uses.
 private Component component = new Component();
 // Track whether Dispose has been called.
 private bool disposed = false;
 // The class constructor.
 public MyResource(IntPtr handle)
 {
 this.handle = handle;
 }

 // Implement IDisposable.
 // Do not make this method virtual.
 // A derived class should not be able to override this method.
 public void Dispose()
 {
 Dispose(true);
 // This object will be cleaned up by the Dispose method.
 // Therefore, you should call GC.SupressFinalize to
 // take this object off the finalization queue
 // and prevent finalization code for this object
 // from executing a second time.
 GC.SuppressFinalize(this);
 }

 // Dispose(bool disposing) executes in two distinct scenarios.
 // If disposing equals true, the method has been called directly
 // or indirectly by a user's code. Managed and unmanaged resources
 // can be disposed.

 // If disposing equals false, the method has been called by the
 // runtime from inside the finalizer and you should not reference
 // other objects. Only unmanaged resources can be disposed.
 protected virtual void Dispose(bool disposing)
 {
 // Check to see if Dispose has already been called.
 if(!this.disposed)
 {
 // If disposing equals true, dispose all managed
 // and unmanaged resources.
 if(disposing)
 {
 // Dispose managed resources.
 component.Dispose();
 }

 // Call the appropriate methods to clean up
 // unmanaged resources here.
 // If disposing is false,
 // only the following code is executed.
 CloseHandle(handle);
 handle = IntPtr.Zero;

 // Note disposing has been done.
 disposed = true;
 }
 }

 // Use interop to call the method necessary
 // to clean up the unmanaged resource.
 [System.Runtime.InteropServices.DllImport("Kernel32")]
 private extern static Boolean CloseHandle(IntPtr handle);

 // Use C# destructor syntax for finalization code.
 // This destructor will run only if the Dispose method
 // does not get called.
 // It gives your base class the opportunity to finalize.
 // Do not provide destructors in types derived from this class.
 ~MyResource()
 {
 // Do not re-create Dispose clean-up code here.
 // Calling Dispose(false) is optimal in terms of
 // readability and maintainability.
 Dispose(false);
 }
 }
 public static void Main()
 {
 // Insert code here to create
 // and use the MyResource object.
 }
}

