
Memory Management in .NET

In the common language runtime (CLR), the garbage collector (GC) serves as an automatic memory

manager. The garbage collector manages the allocation and release of memory for an application. For

developers working with managed code, this means that you don't have to write code to perform memory

management tasks. Automatic memory management can eliminate common problems, such as forgetting

to free an object and causing a memory leak or attempting to access memory for an object that's already

been freed.

Fundamentals of memory

The following list summarizes important CLR memory concepts:

 Each process has its own, separate virtual address space. All processes on the same computer

share the same physical memory and the page file, if there is one.

 By default, on 32-bit computers, each process has a 2-GB user-mode virtual address space.

 As an application developer, you work only with virtual address space and never manipulate

physical memory directly. The garbage collector allocates and frees virtual memory for you on the

managed heap.

 If you're writing native code, you use Windows functions to work with the virtual address space.

These functions allocate and free virtual memory for you on native heaps.

 Virtual memory can be in three states:

State Description

Free The block of memory has no references to it and is available for allocation.

Reserved The block of memory is available for your use and cannot be used for any other

allocation request. However, you cannot store data to this memory block until it

is committed.

Committed The block of memory is assigned to physical storage.

 Virtual address space can get fragmented. This means that there are free blocks, also known as

holes, in the address space. When a virtual memory allocation is requested, the virtual memory

manager has to find a single free block that is large enough to satisfy that allocation request. Even

if you have 2 GB of free space, an allocation that requires 2 GB will be unsuccessful unless all of

that free space is in a single address block.

 You can run out of memory if there isn't enough virtual address space to reserve or physical space

to commit.

The page file is used even if physical memory pressure (that is, demand for physical memory) is low. The

first time that physical memory pressure is high, the operating system must make room in physical

memory to store data, and it backs up some of the data that is in physical memory to the page file. That

data is not paged until it's needed, so it's possible to encounter paging in situations where the physical

memory pressure is low.

Memory allocation

When you initialize a new process, the runtime reserves a contiguous region of address space for the

process. This reserved address space is called the managed heap. The managed heap maintains a pointer

to the address where the next object in the heap will be allocated. Initially, this pointer is set to the

managed heap's base address. All reference types are allocated on the managed heap. When an

application creates the first reference type, memory is allocated for the type at the base address of the

managed heap. When the application creates the next object, the garbage collector allocates memory for

it in the address space immediately following the first object. As long as address space is available, the

garbage collector continues to allocate space for new objects in this manner.

Releasing Memory

The garbage collector's optimizing engine determines the best time to perform a collection based on the

allocations being made. When the garbage collector performs a collection, it releases the memory for

objects that are no longer being used by the application. It determines which objects are no longer being

used by examining the application's roots. Every application has a set of roots. Each root either refers to

an object on the managed heap or is set to null. An application's roots include static fields, local variables

and parameters on a thread's stack, and CPU registers. The garbage collector has access to the list of active

roots that the just-in-time (JIT) compiler and the runtime maintain. Using this list, it examines an

application's roots, and in the process creates a graph that contains all the objects that are reachable from

the roots.

Objects that are not in the graph are unreachable from the application's roots. The garbage collector

considers unreachable objects garbage and will release the memory allocated for them. During a

collection, the garbage collector examines the managed heap, looking for the blocks of address space

occupied by unreachable objects. As it discovers each unreachable object, it uses a memory-copying

function to compact the reachable objects in memory, freeing up the blocks of address spaces allocated

to unreachable objects. Once the memory for the reachable objects has been compacted, the garbage

collector makes the necessary pointer corrections so that the application's roots point to the objects in

their new locations. It also positions the managed heap's pointer after the last reachable object. Note that

memory is compacted only if a collection discovers a significant number of unreachable objects. If all the

objects in the managed heap survive a collection, then there is no need for memory compaction.

To improve performance, the runtime allocates memory for large objects in a separate heap. The garbage

collector automatically releases the memory for large objects. However, to avoid moving large objects in

memory, this memory is not compacted.

The managed heap

After the garbage collector is initialized by the CLR, it allocates a segment of memory to store and manage

objects. This memory is called the managed heap, as opposed to a native heap in the operating system.

There is a managed heap for each managed process. All threads in the process allocate memory for objects

on the same heap.

To reserve memory, the garbage collector calls the Windows VirtualAlloc function and reserves one

segment of memory at a time for managed applications. The garbage collector also reserves segments, as

needed, and releases segments back to the operating system (after clearing them of any objects) by calling

the Windows VirtualFree function.

The fewer objects allocated on the heap, the less work the garbage collector has to do. When you allocate

objects, don't use rounded-up values that exceed your needs, such as allocating an array of 32 bytes when

you need only 15 bytes.

When a garbage collection is triggered, the garbage collector reclaims the memory that's occupied by

dead objects. The reclaiming process compacts live objects so that they are moved together, and the dead

space is removed, thereby making the heap smaller. This ensures that objects that are allocated together

stay together on the managed heap to preserve their locality.

The intrusiveness (frequency and duration) of garbage collections is the result of the volume of allocations

and the amount of survived memory on the managed heap.

The heap can be considered as the accumulation of two heaps: the large object heap and the small object

heap. The large object heap contains objects that are 85,000 bytes and larger, which are usually arrays.

It's rare for an instance object to be extremely large.

