
Anonymous Method

As the name suggests, an anonymous method in C# is a method without having a name. The Anonymous

methods in C# can be defined using the keyword delegate and can be assigned to a variable of the

delegate type. An anonymous method is an "inline" statement or expression that can be used wherever

a delegate type is expected. You can use it to initialize a named delegate or pass it instead of a named

delegate type as a method parameter.

To bind a delegate with a method, first, we need to create an instance of a delegate and when we create

the instance of a delegate, we need to pass the method name as a parameter to the delegate constructor,

and it is the function the delegate will point to. An anonymous method is also related to a delegate.

Without binding a named block (function) to a delegate, we can also bind a code block to a delegate means

an unnamed code blocked to a delegate which is nothing but an anonymous method in C#.

Example:

using System;
namespace DelegateDemo
{

 public class AnonymousMethods
 {

 public delegate string GreetingsDelegate(string name);
 static void Main(string[] args)
 {
 string Message = "Welcome to SSM Infotech Solutions Pvt Ltd";
 GreetingsDelegate gd = delegate(string name)
 {

 return "Hello " + name + " " + Message;
 };

 string GreetingsMessage = gd.Invoke("Dhaval");
 Console.WriteLine(GreetingsMessage);

 Console.ReadKey();

 }

 }

}

// Output:
// Hello Dhaval Welcome to SSM Infotech Solutions Pvt Ltd

Limitations: An anonymous method in C# cannot contain any jump statement like goto, break or continue.

It cannot access the ref or out parameter of an outer method. The Anonymous methods cannot have or

access the unsafe code.

Points to remember:

 The anonymous methods can be defined using the delegate keyword.

 An anonymous method must be assigned to a delegate type.

 This method can access outer variables or functions.

 An anonymous method can be passed as a parameter.

 This method can be used as event handlers.

Example:

using System;
using System.Collections;
namespace AnonymousMethodExample
{
 public class Program
 {

 public static void Main()
 {

 //Step2: Create a collection of List of Employees
 List<Employee> listEmployees = new List<Employee>()
 {

 new Employee{ ID = 101, Name = "Rahul", Gender = "Male", Salary =
100000},
 new Employee{ ID = 102, Name = "Priyanka", Gender = "Female",
Salary = 200000},
 new Employee{ ID = 103, Name = "Vivek", Gender = "Male", Salary =
300000},
 new Employee{ ID = 104, Name = "Kinjal", Gender = "Female",
Salary = 400000},
 new Employee{ ID = 104, Name = "Jigar", Gender = "Male", Salary =
500000},
 };

 //Step3: An anonymous method is being passed as an argument to
 // the Find() method of List Collection.
 Employee employee = listEmployees.Find(
 delegate (Employee x)
 {

 return x.ID == 103;
 }

);

 Console.WriteLine(@"ID : {0}, Name : {1}, Gender : {2}, Salary : {3}",
 employee.ID, employee.Name, employee.Gender, employee.Salary);

 Console.ReadKey();

 }
 }

 // Step1: Create a class called Employee with ID, Name, Gender and Salary
 //Properties
 public class Employee
 {

 public int ID { get; set; }
 public string Name { get; set; }
 public string Gender { get; set; }
 public double Salary { get; set; }
 }

}

// Output:
// ID : 103, Name : Vivek, Gender : Male, Salary : 300000

