
Passing data from one thread to another (Inter-process Communication)

You need some form of a synchronization mechanism to modify objects between multiple threads. If you

don't use a specialized thread safe collection (these are available in .NET 4), you need to lock using a

monitor. Usually, a more appropriate collection type for the producer/consumer pattern is a Queue (a

FIFO collection), instead of a List:

Plain Queue with explicit locking (System.Collections)

. . .
private readonly object _lock = new object();
private readonly Queue<Item> _queue = new Queue<Item>();
private readonly AutoResetEvent _signal = new AutoResetEvent();
. . .
void ProducerThread()
{
 while (ShouldRun)
 {
 Item item = GetNextItem();
 // you need to make sure only one thread can access the list
 // at a time
 lock (_lock)
 {
 _queue.Enqueue(item);
 }
 // notify the waiting thread
 _signal.Set();
 }
}

. . .

And in the consumer thread, you need to fetch the item and process it:

. . .

void ConsumerThread()
{
 while (ShouldRun)
 {
 // wait to be notified
 _signal.WaitOne();
 Item item = null;
 do
 {
 item = null;
 // fetch the item, but only lock shortly
 lock (_lock)
 {
 if (_queue.Count > 0)
 item = _queue.Dequeue(item);
 }

 if (item != null)
 {
 // do stuff
 }
 }
 while (item != null); // loop until there are items to collect
 }
}

. . .

Starting with .NET 4, there is a ConcurrentQueue<T> collection, a thread-safe FIFO, which removes the

need to lock while accessing it and simplifies the code:

ConcurrentQueue (System.Collections.Concurrent)

. . .

private readonly ConcurrentQueue<Item> _queue = new ConcurrentQueue<Item>();
. . .

void ProducerThread()
{
 while (ShouldRun)
 {
 Item item = GetNextItem();
 _queue.Enqueue(item);
 _signal.Set();
 }
}
. . .

void ConsumerThread()
{
 while (ShouldRun)
 {
 _signal.WaitOne();
 Item item = null;
 while (_queue.TryDequeue(out item))
 {
 // do stuff
 }
 }
}

. . .

Finally, if you only wish that your consumer thread gets items in chunks periodically, you would change

this to:

ConcurrentQueue with threshold (10 sec. or 10 items)

. . .

private readonly ConcurrentQueue<Item> _queue = new ConcurrentQueue<Item>();
. . .

void ProducerThread()
{

 while (ShouldRun)
 {

 Item item = GetNextItem();

 _queue.Enqueue(item);

 // more than 10 items? panic!
 // notify consumer immediately
 if (_queue.Count >= 10)

 _signal.Set();

 }

}

. . .

void ConsumerThread()
{

 while (ShouldRun)
 {

 // wait for a signal, OR until
 // 10 seconds elapses
 _signal.WaitOne(TimeSpan.FromSeconds(10));

 Item item = null;
 while (_queue.TryDequeue(out item))
 {

 // do stuff
 }

 }

}

. . .

Exercise: This pattern is so useful that it's nice to abstract it into a generic class which delegates producing

and consuming to external code. It would be a good exercise to make it generic.

You will also need a Stop method which will probably set a volatile bool flag indicating that it's time to

stop, and then set the signal to unpause the consumer and allow it to end.

