
Generic Classes

Generic classes encapsulate operations that are not specific to a particular data type. The most common

use for generic classes is with collections like linked lists, hash tables, stacks, queues, trees, and so on.

Typically, you create generic classes by starting with an existing concrete class, and changing types into

type parameters one at a time until you reach the optimal balance of generalization and usability. Generic

classes can inherit from concrete, closed constructed (Node<int>), or open constructed (Node<T>) base

classes:

class BaseNode { }
class BaseNodeGeneric<T> { }

// concrete type
class NodeConcrete<T> : BaseNode { }

//closed constructed type
class NodeClosed<T> : BaseNodeGeneric<int> { }

//open constructed type
class NodeOpen<T> : BaseNodeGeneric<T> { }

Non-generic, in other words, concrete, classes can inherit from closed constructed base classes, but not

from open constructed classes or from type parameters because there is no way at run time for client

code to supply the type argument required to instantiate the base class.

//No error
class Node1 : BaseNodeGeneric<int> { }

//Generates an error
//class Node2 : BaseNodeGeneric<T> {}

//Generates an error
//class Node3 : T {}

Generic classes that inherit from open constructed types must supply type arguments for any base class

type parameters that are not shared by the inheriting class, as demonstrated in the following code:

class BaseNodeMultiple<T, U> { }

//No error
class Node4<T> : BaseNodeMultiple<T, int> { }

//No error
class Node5<T, U> : BaseNodeMultiple<T, U> { }

//Generates an error
//class Node6<T> : BaseNodeMultiple<T, U> {}

Generic classes that inherit from open constructed types must specify constraints that are a superset of,

or imply, the constraints on the base type:

class NodeItem<T> where T : System.IComparable<T>, new() { }
class SpecialNodeItem<T> : NodeItem<T> where T : System.IComparable<T>, new() { }

If a generic class implements an interface, all instances of that class can be cast to that interface. Generic

classes are invariant. In other words, if an input parameter specifies a List<BaseClass>, you will get a

compile-time error if you try to provide a List<DerivedClass>.

Generic Methods

A generic method is a method that is declared with type parameters, as follows:

static void Swap<T>(ref T lhs, ref T rhs)
{
 T temp;
 temp = lhs;
 lhs = rhs;
 rhs = temp;
}

The following code example shows one way to call the method by using int for the type argument:

public static void TestSwap()
{
 int a = 1;
 int b = 2;

 Swap<int>(ref a, ref b);
 System.Console.WriteLine(a + " " + b);
}

You can also omit the type argument and the compiler will infer it. The following call to Swap is equivalent

to the previous call:

Swap(ref a, ref b);

The same rules for type inference apply to static methods and instance methods. The compiler can infer

the type parameters based on the method arguments you pass in; it cannot infer the type parameters

only from a constraint or return value. Therefore type inference does not work with methods that have

no parameters. Type inference occurs at compile time before the compiler tries to resolve overloaded

method signatures. The compiler applies type inference logic to all generic methods that share the same

name. In the overload resolution step, the compiler includes only those generic methods on which type

inference succeeded.

Within a generic class, non-generic methods can access the class-level type parameters, as follows:

class SampleClass<T>
{
 void Swap(ref T lhs, ref T rhs) { }
}

If you define a generic method that takes the same type parameters as the containing class, the compiler

generates warning CS0693 because within the method scope, the argument supplied for the inner T hides

the argument supplied for the outer T. If you require the flexibility of calling a generic class method with

type arguments other than the ones provided when the class was instantiated, consider providing another

identifier for the type parameter of the method, as shown in GenericList2<T> in the following

example:

class GenericList<T>
{
 // CS0693
 void SampleMethod<T>() { }
}

class GenericList2<T>
{
 //No warning
 void SampleMethod<U>() { }
}

Use constraints to enable more specialized operations on type parameters in methods. This version of

Swap<T>, now named SwapIfGreater<T>, can only be used with type arguments that implement

IComparable<T>.

void SwapIfGreater<T>(ref T lhs, ref T rhs) where T : System.IComparable<T>
{
 T temp;
 if (lhs.CompareTo(rhs) > 0)
 {
 temp = lhs;
 lhs = rhs;
 rhs = temp;
 }
}

Generic methods can be overloaded on several type parameters. For example, the following methods can

all be located in the same class:

void DoWork() { }
void DoWork<T>() { }
void DoWork<T, U>() { }

