Visual Studio Profiling Tools

If your app runs too slowly or uses too much memory, you may need to test your app with the profiling
tools early on. Visual Studio provides a variety of profiling tools to help you diagnose different kinds of
performance issues depending on your app type.

Measure performance while debugging

The profiling tools that you can access during a debugging session are available in the Diagnostic Tools
window. The Diagnostic Tools window appears automatically unless you have turned it off. To bring up
the window, click Debug / Windows / Show Diagnostic Tools. With the window open, you can select tools
for which you want to collect data.

> ()
Diagnostic Tools 2 S5 AP 3 Diagnastic Tools v B x
- & ~
£} Select Tools v 3 & |/
& Diagnostics session: 11 seconds
+ Memory Usage $2
2 9 =) I 10s 2|
RN <
Ul Analysis = 4 Events
v/ CPU Usage]
G Settings 4 Process Memory (MB)C W Snapshot Private Bytes
50 50
No data has been collected yet. Start debugging to see . .
1 4
dlagnosucs data. 4 CPU (% of all processors)
100 100
0 0

Summary Events Memory Usage CPU Usage
Events
@2 Show Events (0 of 0)
Memaory Usage
B Take Snapshot
CPU Usage

® Enable CPU Profiling

While you are debugging, you can use the Diagnostic Tools window to analyze CPU and memory usage,
and you can view events that show performance-related information.

The Diagnostic Tools window is a common way to profile apps, but for Release builds you can also do a
post-mortem analysis of your app instead. Tools available in the Diagnostic Tools window or during a
debugging session include:

e (CPU usage
e Memory usage
o PerfTips

Measure performance in release builds

Tools in the Performance Profiler are intended to provide analysis for Release builds. In the Performance
Profiler, you can collect diagnostic info while the app is running, and then examine the collected
information after the app is stopped (a post-mortem analysis).

Open the Performance Profiler by choosing Debug > Performance Profiler (or Alt + F2).

Report20200908-1638.diagsession -+ X [[E U RN e b e Lt LTl Report20200908-1548.diagsession” Program.cs
> Analysis Target

Startup Project
["é MyProfilerApp

Change
Target ¥

! Solution configuration is set to Debug. Switch to a Release configuration for more accurate results.

Available Tools Show all tools

[J .NET Async NET Object Allocation Tracking
Tool to investigate async/await usage in .NET applications See wi t

reclaimed by the G

CPU Usage & [Events Viewer
See where the CPU is spending time executing your code. Useful See the events (ETW or NetTrace) that occurred during the
when the CPU is the performance bottleneck session, such as log messages, exceptions and HTTP requests
[J GPu Usage o] Instrumentation
Examine GPU usage in your DirectX application. Useful to Instrument your application to investigate exact call counts and

determine whether the CPU or GPU is the performance bottleneck call times

Memory Usage

Start

Tools available in the Performance Profiler include:

e (CPU usage

e .NET object allocation
e Memory usage

e .NET async tool

e Database tool

e GPU usage

Examine performance using PerfTips

Often, the easiest way to view performance information is to use PerfTips. Using PerfTips, you can view
performance information while interacting with your code. You can check information such as the
duration of the event (measured from when the debugger was last paused, or when the app started). For
example, if you step through code (F10, F11), PerfTips show you the app runtime duration from the
previous step operation to the current step.

38 = private void GetMaxNumberButton_Click(object sender, FoutedEventirgs e)
'J_l {

Q 32 etMaxNumberAsyncButton.IsEnabled = false;
lock (m_totalltersLock)

" {
o 35 m_totalIterations = B;©
36 }

. List<int>» tasks = new I1*‘<1r1t>'|::|;
" - for (var i = 8; i < NUM_TASKS; i++)

You can use PerfTips to examine how long it takes for a code block to execute, or how long it takes for a
single function to complete.

PerfTips show the same events that also show up in the Events view of the Diagnostic Tools. In
the Events view, you can view different events that occur while you are debugging, such as the setting of
a breakpoint or a code stepping operation.

Summary Events Memory Usage CPU Usage
Y Filter = || Search Events P -
Event Time Duration Thread
Breakpoint: Breakpoint Hit 3.00s 15ms [23784]
Step: Step Recorded 3.01s 9ms [23784]
Step: Step Recorded 3.01s 4ms [23784]
Step: Step Recorded 3.01s Tms [23784)

Step: Step Recorded [23784]

Go to Source Code

Analyze CPU usage

The CPU Usage tool is a good place to start analyzing your app's performance. It will tell you more about
CPU resources that your app is consuming. You can use the debugger-integrated CPU Usage tool or the
post-mortem CPU Usage tool.

When using the debugger-integrated CPU Usage tool, open the Diagnostics Tool window (if it's closed,
choose Debug / Windows / Show Diagnostic Tools). While debugging, open the Summary view, and
select Record CPU Profile.

One way to use the tool is to set two breakpoints in your code, one at the beginning and one at the end
of the function or the region of code you want to analyze. Examine the profiling data when you are paused
at the second breakpoint.

The CPU Usage view shows you a list of functions ordered by longest running, with the longest running
function at the top. This can help guide you to functions where performance bottlenecks are happening.

Summary Events Memory Usage CPU Usage Summar}f Events Memory Usage cpPU Usage
E::"f:h o # CPU Profiling Y Filter * P
. Ex:;ﬂ::: ;(o:]] } Function Name Total CPU [ms, %]+
_ 4 Profiling App.exe (PID: 14232) 2369 (100.00 %)
sl G Profiling_App.MainWindow:GetMaxNumberButton_Click 2308 (9743 %)
Memory Usage [External Call) System. Windows Application.Run()§##6000... 2308 (9743 %)
& Take Snapshot Profiing_App App:Main 2308 (9743%)
e [Extemnal Call] System Random.Next($##6000FF7 1255 (5298 %)
(o recocruprtie]
[External Call) System.Random.InternalSample() $##6000FFa 38 (1.60 %)
[External Call) System.Windows Controls. TextBox.set_Text(... 3(013%)

Double-click on a function that you are interested in, and you will see a more detailed three-pane
"butterfly" view, with the selected function in the middle of the window, the calling function on the left,
and called functions on the right. The Function Body section shows the total amount of time (and the
percentage of time) spent in the function body excluding time spent in calling and called functions. This
data can help you evaluate whether the function itself is a performance bottleneck.

CPU Usage + > QAEMUILLGTREL] MainWindow.xaml.cs

Current View: Caller,’CaIIeei] |

Profiling_App.MainWindow:GetNumber

Calling Functions Current Function Called Functions
Profiling_App.MainWin... 1957 (95.70 %) Profiling_App.MainWind... 823 (40.24 %)

Function Body 821140.15%) =

Analyze memory usage

The Diagnostic Tools window also allows you to evaluate memory usage in your app using the Memory
Usage tool. For example, you can look at the number and size of objects on the heap. You can use the
debugger-integrated Memory Usage tool or the post-mortem Memory Usage tool in the Performance
Profiler.

.NET developers may choose between either the .NET Object Allocation tool or the Memory usage tool.

o The .NET Object Allocation tool helps you identify allocation patterns and anomalies in your .NET
code, and helps identify common issues with garbage collection. This tool runs only as a post-
mortem tool. You can run this tool on local or remote machines.

e The Memory usage tool is helpful in identifying memory leaks, which are not typically common in
.NET apps. If you need to use debugger features while checking memory, such as stepping through
code, the debugger-integrated Memory usage tool is recommended.

To analyze memory usage with the Memory Usage tool, you need to take at least one memory snapshot.
Often, the best way to analyze memory is to take two snapshots; the first right before a suspected memory
issue, and the second snapshot right after a suspected memory issue occurs. Then you can view a diff of
the two snapshots and see exactly what changed. The following illustration shows taking a snapshot with
the debugger-integrated tool.

Summary Events Memory Usage CPU Usage | Summary Events Memory Usage CPU Usage
[0 Talﬁ Snapshot View Heap Delete | €4 Take Snapshot P View Heap X Delete

Time Objects (Diff) Heap Size (Diff) Time Objects (Diff)y Heap Size (Diff)
1 519 37844 (n/a) 215483KB (n/a)
» 2 5345 37934 (+90 4) 215954 KB (+4.01K

§ for the selected snapshot, sorted by heap size.

When you select one of the arrow links, you are given a differential view of the heap (a red up
arrow ¥ shows an increasing object count (left) or an increasing heap size (right)). If you click the right
link, you get a differential heap view ordered by objects that increased the most in heap size. This can
help you pinpoint memory problems. For example, in the illustration below, the bytes used
by ClassHandlersStore objects increased by 3,492 bytes in the second snapshot.

If you click the link on the left instead in the Memory Usage view, the heap view is organized by object
count; the objects of a particular type that increased the most in number are shown at the top (sorted
by Count Diff column).

Snapshot #2 Heap P..g App.exe (15805) & X

Managed Memory (Profiling App.exe) Compare 10! spapshot #1 E] -
Object Type Count Diff. Size Diff. (Bytes) = Inclusive Size Diff. (Bytes) Count Size (Bytes) Inclusive Size (Bytes)
EventRoute +3 +1,368 +1,524 4 1,808 2,016
StylusPointPropertylnfo +30 +1,320 +1,320 30 1,320 1,320
StylusTouchDevice +5 +520 +520 5 520 520
DispatcherOperation +5 +420 +1,780 8 672 2,528
List<Int32> +1 +292 +292 1 292 292
TextTreeTextBlock +1 +244 +244 1 244 244
ExecutionContext +5 +220 +320 12 528 744
Task<Object> +5 +220 +280 8 352 448
Hashtable +2 +216 +1,184 79 64,264 193,276
Priorityltem <DispatcherOpe... +5 +160 +1,152 8 256 1,272

Paths to Root | Referenced Types
Object Type Reference Count Diff., Reference Count

4 ClassHandlersStore
MS.Utility. DTypeMap [Static variable GlobalEventManager._dTypedClassListen... 0 32

