Debugging with Visual Studio

To debug, you need to start your app with the debugger attached to the app process. F5 (Debug > Start
Debugging) is the most common way to do that. However, right now you may not have set any
breakpoints to examine your app code, so we will do that first and then start debugging.

Set a breakpoint and start the debugger

Breakpoints are the most basic and essential feature of reliable debugging. A breakpoint indicates where
Visual Studio should suspend your running code so you can take a look at the values of variables, or the
behaviour of memory, or whether or not a branch of code is getting run.

If you have a file open in the code editor, you can set a breakpoint by clicking in the margin to the left of
a line of code.

ﬂ[] photoapp - Microsoft Visual 5tudio Int Preview

File Edit View Project Build Debug Team Tools Te
- B B2 W ~ O ~| Debug =~ AnyCPU

i
a
kil
I
b |

'L.T','-' MainWindowxamles + X
:1 [<#] photoapp ~| @ MainW
<1
ﬁ 10 namespace SDKSamples.ImageSample
11 {
=
3 ;
- 12 public sealed partial class MainWindow : Window
o]
14 public PhoteCellection Photas;

[] 16 - public MainWindeow()

17 {

13 InitializeComponent();

! ¥

pl

21 = private void OnPhotoClick(object sender, RoutedEventhrgs e)
22 {

23 PhotoView pvWindow = new PhotoWiew(};

Start Debugging in the Debug Toolbar, and the debugger runs to the first breakpoint that it encounters. If
the app is not yet running, F5 starts the debugger and stops at the first breakpoint. Breakpoints are a
useful feature when you know the line of code or the section of code that you want to examine in detail.

Navigate code in the debugger using step commands

To start your app with the debugger attached, press F11 (Debug > Step Into). F11 is the Step Into
command and advances the app execution one statement at a time. When you start the app with F11, the
debugger breaks on the first statement that gets executed.

The yellow arrow represents the statement on which the debugger paused, which also suspends app
execution at the same point (this statement has not yet executed).

12 - public sealed partial class MainWindow : Window

13 {
14 publiec PhoteCellection Photos;
15
[] 16 - public MainWindow()
17 {
[18 InitializeComponent();
19 ¥

Step over code to skip functions

When you are on a line of code that is a function or method call, you can press F10 (Debug > Step Over)
instead of F11. F10 advances the debugger without stepping into functions or methods in your app code
(the code still executes). By pressing F10, you can skip over code that you're not interested in. This way,
you can quickly get to code that you are more interested in.

Step into a property

By default the debugger skips over managed properties and fields, but the Step Into Specific command
allows you to override this behaviour. Right-click on a property or field and choose Step Into Specific,
then choose one of the available options.

13 MainWindow mainWindow = new MainWindow();
14 mainkindow.Show();
15 mainWindow.Photos = (Photolollection){this.Resources["Photos"] as 0bj
a’ 16 P‘ainwindow_Phntgs_Pafh = Fruvirconmant CusecantDdcactor: + "\ \imacas" |
17 } Le View Designer Shift+F7
18 } Quick Actions and Refactorings... Cirl+.
19 }
[0 Rename.. Ctrl+R, Ctrl+R
Remove and Sort Usings Ctrl+R, Ctri+G
X Peek Definition Alt+F12
". Go To Definition F12
Go To Implementation Ctrl+F12
100% = 4 Find All References Shift+F12

View Call Hierarchy Ctri+K, Ctri+T

Step Into Specific b b

System.Environment.CurrentDirectory.get

string.Concat k Run To Cursor Ctri+F10 |
KSamplesimageSample PhotoCollection Path.set %= Set Next Statement Ctrl+Shift+F10
5 Go To Disassembly Alt+G

In this example, Step Into Specific gets us to the code for Path.set.

- public string Path

[
1

m
+

N

_directory = new rectoryInfo(value);
Update();
}

get { return _directory.FullName; }

}
Run to a point in your code quickly using the mouse

While in the debugger, hover over a line of code until the Run to Click (Run execution to here)
button [*!| appears on the left.

public string Path

{
1

set

{

directory = new t fo(value);

get { return _directory.FullName; }

Click the Run to Click (Run execution to here) button. The debugger advances to the line of code where
you clicked. Using this button is similar to setting a temporary breakpoint. This command is also handy for
getting around quickly within a visible region of app code. You can use Run to Click in any open file.

Advance the debugger out of the current function

Sometimes, you might want to continue your debugging session but advance the debugger all the way
through the current function. Press Shift + F11 (or Debug > Step Out). This command resumes app
execution (and advances the debugger) until the current function returns.

Run to cursor

When you are editing code (rather than paused in the debugger), right-click a line of code in your app and
choose Run to Cursor. This command starts debugging and sets a temporary breakpoint on the current
line of code.

If you have set breakpoints, the debugger pauses on the first breakpoint that it hits.
Press F5 until you reach the line of code where you selected Run to Cursor.

This command is useful when you are editing code and want to quickly set a temporary breakpoint and
start the debugger at the same time.

foreach (FileInfe f in _directory.GetFiles("*.jpg"))

ga pddl now Photol £ EullNamalh-

81 Quick Actions and Refactorings... Ctri+.

o } L] Rename.. Ctri+R, Ctri+R

83 catch (D

24 { Remove and Sort Usings Ctrl+R, Ctrl+G
Syst{ W Peek Definition Alt+F12

- } ". Go To Definition F12

H) Go To Implementation Ctrl+F12

DirectoryInfy Find All References Shift+F12

:"ljl ¥ # View Call Hierarchy Ctri+K, Ctri+T

97 (::__'t Run To Cursor :::) Ctrl+F10

b T ?ublic enum Colof Execute in Interactive Ctrl+E, Ctrl+E

Restart your app quickly

Click the Restart © button in the Debug Toolbar (Ctrl + Shift +F5).

When you press Restart, it saves time versus stopping the app and restarting the debugger. The debugger
pauses at the first breakpoint that is hit by executing code. If you do want to stop the debugger and get
back into the code editor, you can press the red stop M button instead of Restart.

Edit your code and continue debugging (C#, VB, C++, XAML)

In most languages supported by Visual Studio, you can edit your code in the middle of a debugging session
and continue debugging. To use this feature, click into your code with your cursor while paused in the
debugger, make edits, and press F5, F10, or F11 to continue debugging.

80 - try
81 {
= 82 - foreach (FileInfo f in _directory.GetFiles("*.jpg")) @@ f (market 0:
83 {
& 84 » }Qdd(new Photo(f.FullName, "descriptiod"T));l
85 //Add(new Photo(f.FullName, GetDescription(f).ToString()));
86 }
89 }
9@ catch (DirectoryNotFoundException)
91 {
System.Windows.MessageBox.Show("No Such Directory");
}
94 }

80 = try
81 {
s - foreach (FileInfo f in _directory.GetFiles("*.jpg")) & fl(market (
83 {
@ 32 Add(new Photo(f.FullName, "some new description")) ;|
85 //Add(new Photo(f.FullName, GetDescription(f).ToString()));
86 }
5 ; Press F10 Here!
T2 catch (DirectoryNotFoundException)
91 {
92 System.Windows.MessageBox.Show("No Such Directory");
}
04 }

Inspect variables with data tips

Start inspecting your app state (variables) with the debugger. Often, when you try to debug an issue, you
are attempting to find out whether variables are storing the values that you expect them to have in a
particular app state.

While paused in the debugger, hover over an object with the mouse and you see its default property value
(in this example, the file name market 031.jpg is the default property value).

74 - private void Update()

75 {

76 .Clear();

77 = try

78 {

79 foreach (FileInfo f in _directory.GetFiles("*.jpg"))
(53 20 » Add(new Photo|(f. FullName)); lapse

81 ?D @ f {market 031.jpg} = |

B2 1

23 catch (DirectoryNotFoundException)

84 {

85 System.Windows.MessageBox.Show("No Such Directory");

86 ¥

87 +

RA

Expand the object to see all its properties (such as the FullPath property in this example).

Often, when debugging, you want a quick way to check property values on objects, and the data tips are
a good way to do it.

{1/10/2017 11:23:34 PM}
{CA\Users\mikejo\Documents\Visual &
Q, -~ "CA\\Users\\mikejo\\Documents\\\VisL
true
Q - "jpg”
Q, » "CA\\Users\\mikejo\\Documents\\VisL
Q ~ "C\\Users\\mikejo\\Documents\\VisL
false
{1/11/2017 11:24:39 AM}
{1/11/2017 7:24:39 PM}
{1/10/2017 3:22:23 PM}
{1/10/2017 11:22:23 PM}
49370

74 _:l: ;-:ur"ivate void > M Cr_eatiDnTimeUtc
75 { l> M Directory
76 Clea » Dl_redoryName
1 M Exists
77 = try)
J Extension
78 {
79 forea & FullName
N . L @ FullPath
- & IsReadOnly s
82 ! > M LastAccessTime
83 tch (Di > M LastAccessTimeUtc
n Ea N AR e LastWriteTime
. cvst > M LastWriteTimeUtc
YSRE g Length
86 i }
87 I }
RE

Inspect variables with the Autos and Locals windows

While debugging, look at the Autos window at the bottom of the code editor. In the Autos window, you
see variables along with their current value and their type. The Autos window shows all variables used on

the current line or the preceding line.

(2l Locals Watch 1

Autos * 0 x
MName Value Type
b
o f [market 031.jpg) System. It
& fFullName “CA\\Users\\mikejo\\Document: & - string
P @ this Count =0 SDKSam

Next, look at the Locals window. The Locals window shows you the variables that are currently in scope.

MGl Locals RGN I

Locals * 0 x
Mame Value Type
b SDKSam
B o f (market 031,jpgl Systemn. Il

Set a watch

You can use a Watch window to specify a variable (or an expression) that you want to keep an eye on.
While debugging, right-click an object and choose Add Watch.

Watch 1 *+ 0 x
Name Value Type
e f {market 032)pg) System.li

Autos Locals RELHGR

In this example, we have a watch set on the f object, and you can see its value change as you move through
the debugger. Unlike the other variable windows, the Watch windows always show the variables that you
are watching (they're grayed out when out of scope).

Examine the call stack

Click the Call Stack window while you are debugging, which is by default open in the lower right pane.

Call Stack

Name Lang

2> SDKSample.exe!SDKSamples.imageSample.PhotoCollection.Update() Line 80 C#
SDKSample.exe!SDKSamples.imageSample.PhotoCollection.Path.set(string value) Line 60 C#
SDKSample.exe!SDKSamples.ImageSample.app.OnApplicationStartup(object sender, System.Windows.StartupEventArgs args) Line * C#

(@I eldd Breakpoints Exception Settings Command Window Immediate Window Output

The Call Stack window shows the order in which methods and functions are getting called. The top line
shows the current function (the Update method in this example). The second line shows that Update was
called from the Path.set property, and so on. The call stack is a good way to examine and understand the
execution flow of an app.

You can double-click a line of code to go look at that source code and that also changes the current scope
being inspected by the debugger. This does not advance the debugger.

You can also use right-click menus from the Call Stack window to do other things. For example, you can
insert breakpoints into specific functions, restart your app using Run to Cursor, and to go examine source
code.

Examine an exception

When your app throws an exception, the debugger takes you to the line of code that threw the exception.

public string Path

{
set
{

_directory = new DirectoryInfo(value); €3

Update(); ; :
} i Exception Unhandled F X
get { return _directory.FullName; } H
} | System.ArgumentException: The path is not of a legal form.”
public Di t Info Directory - . -
{ i View Details Copy Details

set | b Exception Settings

{

In this example, the Exception Helper shows you a System.Argument exception and an error message
that says that the path is not a legal form. So, we know the error occurred on a method or function
argument.

In this example, the DirectoryInfo call gave the error on the empty string stored in the value variable.

The Exception Helper is a great feature that can help you debug errors. You can also do things like view
error details and add a watch from the Exception Helper. Or, if needed, you can change conditions for
throwing the particular exception. Expand the Exception Settings node to see more options on how to
handle this exception type.

