
C# Program Building Blocks 

The types described in the previous article are built using these building blocks: members, expressions, 

and statements. 

Members 

The members of a class are either static members or instance members. Static members belong to classes, 

and instance members belong to objects (instances of classes). 

The following list provides an overview of the kinds of members a class can contain. 

 Constants: Constant values associated with the class 

 Fields: Variables that are associated of the class 

 Methods: Actions that can be performed by the class 

 Properties: Actions associated with reading and writing named properties of the class 

 Indexers: Actions associated with indexing instances of the class like an array 

 Events: Notifications that can be generated by the class 

 Operators: Conversions and expression operators supported by the class 

 Constructors: Actions required to initialize instances of the class or the class itself 

 Finalizers: Actions performed before instances of the class are permanently discarded 

 Types: Nested types declared by the class 

Accessibility 

Each member of a class has an associated accessibility, which controls the regions of program text that 

can access the member. There are six possible forms of accessibility. The access modifiers are summarized 

below. 

 public: Access isn't limited. 

 private: Access is limited to this class. 

 protected: Access is limited to this class or classes derived from this class. 

 internal: Access is limited to the current assembly (.exe or .dll). 

 protected internal: Access is limited to this class, classes derived from this class, or classes 

within the same assembly. 

 private protected: Access is limited to this class or classes derived from this type within the 

same assembly. 

Fields 

A field is a variable that is associated with a class or with an instance of a class. A field declared with the 

static modifier defines a static field. A static field identifies exactly one storage location. No matter how 

many instances of a class are created, there's only ever one copy of a static field. A field declared without 

the static modifier defines an instance field. Every instance of a class contains a separate copy of all the 

instance fields of that class. 



Operators 

An operator is a member that defines the meaning of applying a particular expression operator to 

instances of a class. Three kinds of operators can be defined: unary operators, binary operators, and 

conversion operators. All operators must be declared as public and static. 

For the complete list of C# operators ordered by precedence level, see C# operators. 

Expressions 

Expressions are constructed from operands and operators. The operators of an expression indicate which 

operations to apply to the operands. Examples of operators include +, -, *, /, and new. Examples of 

operands include literals, fields, local variables, and expressions. 

When an expression contains multiple operators, the precedence of the operators controls the order in 

which the individual operators are evaluated. For example, the expression x + y * z is evaluated as x 

+ (y * z) because the * operator has higher precedence than the + operator. 

When an operand occurs between two operators with the same precedence, the associativity of the 

operators controls the order in which the operations are performed: 

Except for the assignment and null-coalescing operators, all binary operators are left-associative, meaning 

that operations are performed from left to right. For example, x + y + z is evaluated as (x + y) + z. 

The assignment operators, the null-coalescing ?? and ??= operators, and the conditional operator ?: are 

right-associative, meaning that operations are performed from right to left. For example, x = y = z is 

evaluated as x = (y = z). 

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y 

by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z. 

Most operators can be overloaded. Operator overloading permits user-defined operator implementations 

to be specified for operations where one or both of the operands are of a user-defined class or struct type. 

C# provides a number of operators to perform arithmetic, logical, bitwise and shift operations and equality 

and order comparisons. 

Statements 

The actions of a program are expressed using statements. C# supports several different kinds of 

statements, a number of which are defined in terms of embedded statements. 

 A block permits multiple statements to be written in contexts where a single statement is allowed. 

A block consists of a list of statements written between the delimiters { and }. 

 Declaration statements are used to declare local variables and constants. 

 Expression statements are used to evaluate expressions. Expressions that can be used as 

statements include method invocations, object allocations using the new operator, assignments 

using = and the compound assignment operators, increment and decrement operations using the 

++ and -- operators and await expressions. 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/


 Selection statements are used to select one of a number of possible statements for execution 

based on the value of some expression. This group contains the if and switch statements. 

 Iteration statements are used to execute repeatedly an embedded statement. This group 

contains the while, do, for, and foreach statements. 

 Jump statements are used to transfer control. This group contains the break, continue, goto, 

throw, return, and yield statements. 

 The try...catch statement is used to catch exceptions that occur during execution of a block, 

and the try...finally statement is used to specify finalization code that is always executed, 

whether an exception occurred or not. 

 The checked and unchecked statements are used to control the overflow-checking context for 

integral-type arithmetic operations and conversions. 

 The lock statement is used to obtain the mutual-exclusion lock for a given object, execute a 

statement, and then release the lock. 

 The using statement is used to obtain a resource, execute a statement, and then dispose of that 

resource. 


