
ArchestrA Object Toolkit

Developer’s Guide

Invensys Systems, Inc.

Revision B

Last Revision: 10/20/09

Copyright
© 2009 Invensys Systems, Inc. All Rights Reserved.
All rights reserved. No part of this documentation shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been
taken in the preparation of this documentation, the publisher and the author
assume no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein.
The information in this documentation is subject to change without notice and does
not represent a commitment on the part of Invensys Systems, Inc. The software
described in this documentation is furnished under a license or nondisclosure
agreement. This software may be used or copied only in accordance with the terms
of these agreements.

Wonderware, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com
For comments or suggestions about the product documentation, send an e-mail
message to productdocs@wonderware.com.

Trademarks
All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc. cannot
attest to the accuracy of this information. Use of a term in this documentation
should not be regarded as affecting the validity of any trademark or service mark.
Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT Analyst,
Factelligence, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2, InBatch,
InControl, IndustrialRAD, IndustrialSQL Server, InTouch, MaintenanceSuite,
MuniSuite, QI Analyst, SCADAlarm, SCADASuite, SuiteLink, SuiteVoyager,
WindowMaker, WindowViewer, Wonderware, Wonderware Factelligence, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and affiliates.
All other brands may be trademarks of their respective owners.

http://www.wonderware.com

3

Contents

Welcome.. 11
Documentation Conventions...11
Technical Support ...12

Chapter 1 Overview and Concepts 13
About the ArchestrA Object Toolkit13
About ApplicationObjects and Primitives........................14
Workflow: Creating an ApplicationObject or Reusable

Primitive ...17
Tour of the User Interface...18

Additions to the Visual Studio Interface.......................19
ArchestrA Object Toolkit Toolbar..............................19
Object Design View ..20
Logger View ..21

Object Designer Window..22
Opening the Object Designer.....................................22
Object Designer Panes ...23

Chapter 2 Object Design Considerations................. 25
Guidelines for Designing the Structure of Control-

Oriented Objects...25
Limitations to the Complexity of Primitive

Hierarchies ...27
Planning Attribute Usage...28
ArchestrA Object Toolkit Developer’s Guide

4 Contents
Performance Considerations...29

Chapter 3 Working with Projects...........................31
Creating a Project ...32
Opening an Existing Project...33
Moving or Deleting Projects..34
Editing Projects in Code or in the ArchestrA Object

Toolkit Designer...34

Chapter 4 Defining an ApplicationObject.................35
Configuring the Object's Names and Description36
Configuring Event Handlers...37

Configuring Config Time Event Handlers37
Configuring Run Time Event Handlers39

Working with Primitives...40
Adding a Local Primitive ...40
Adding a Reusable Primitive ...41

Overriding and Locking Attributes of Reusable
Primitives ...43

Deleting a Primitive ...43
Working with Virtual Primitives...................................43

Defining "Optional" Attributes Using Virtual
Primitives ...45

"Arrays" of Related Primitives45
Naming Considerations for Primitives46

Adding a Custom Object Editor..47
Adding ArchestrA Controls to the Visual Studio

Toolbox..48
Changing the Attribute Reference of ArchestrA

Controls ..49
Configuring Associated Files ..49

Setting up Rules for Dependent Files50
Setting up Rules for References that Don’t

Currently Exist in Visual Studio.............................51
Setting up Rules for References that

Currently Exist in Visual Studio.............................53
Deleting and Re-Ordering Rules54
Managing the Rules File for All Projects54

Configuring Associated Files Manually55
Configuring Additional Object Properties57

Configuring Dump/Load Support for Dynamic
Attributes and Virtual Primitives.............................58
ArchestrA Object Toolkit Developer’s Guide

Contents 5
Configuring Failover Support for Run Time
Dynamic Attributes ...59

Enabling “Advise Only Active” Support for the Object 60
Configuring the Object’s Minimum Application

Server Version..60
Configuring the Object’s IDE Behavior.........................61
Setting the Object’s Toolset ...62

Configuring Toolset Names62
Configuring the Object’s Primitive Execution Order ...63

Associating Different Assemblies with an Object............64
Adding Object Help ...65
Importing an .aaDEF File from a Previous Object

Version ..67

Chapter 5 Defining a Reusable Primitive 69
Switching between Object/Primitive Mode69
Differences Between Editing Objects and Primitives70

Chapter 6 Configuring Attributes.......................... 71
Adding Attributes to an Object or Primitive....................72

Creating a Default Attribute ...74
Creating a “Hidden” Attribute.......................................74

Configuring Config Time Set Handlers............................74
Example: Configuring a Config Time Set Handler...75

Configuring Run Time Set Handlers................................76
Example: Configuring a Run Time Set Handler.......77

Configuring Dynamic Attribute Set Handlers.................78
Example: Configuring a Set Handler for a

Dynamic Attribute ...78
Configuring Attribute Extensions79

Historizing an Attribute...79
Attributes of the History Primitive81

Making an Attribute Alarmable83
Example: Configuring a Value Alarm for an

Attribute ...86
Attributes of the Alarm Primitive87

Adding Inputs and Outputs ..89
Adding an Input ...90

Attributes of the Input Primitive91
Adding an Output...92

Attributes of the Output Primitive............................94
Adding an Input/Output ..95
ArchestrA Object Toolkit Developer’s Guide

6 Contents
Attributes of the Input/Output Primitive97
Configuring “Advise Only Active” Support for an

Attribute ...101
Renaming or Deleting Attributes104

Chapter 7 Internationalizing Objects.................... 105
About Internationalizing Objects105
Configuring the Object Dictionary106

Dictionary File Format and Structure107
Editing the Dictionary in Visual Studio107

Retrieving Localized Dictionary Strings........................108

Chapter 8 Building and Versioning Objects 109
Validating an Object ...110
Configuring Build Options..110

Configuring Output Preferences111
Configuring Galaxy Preferences..................................112
Configuring Additional Search Paths113

Managing an Object's Versions113
Building a New Minor Version of an Object114
Building a New Major Version of an Object115
Creating a New Build without Incrementing the

Version Number...116
Manually Specifying the Version Number..................117

Building an Object...117
Migrating Objects..119

Example: Migrating a Previous Object Version121
Additional Guidelines for Migrating Objects..............121

Chapter 9 Debugging Objects 123
Attaching the Debugger to the Processes Running the

Current Object Version..124
Attaching the Debugger during the Build Process........125

Appendix A Programming Techniques 127
Programming Workflow..127
Configuring Internal and External Names....................129
Providing Wrappers for Referencing ArchestrA

Attributes ...130
Config Time Coding...131
ArchestrA Object Toolkit Developer’s Guide

Contents 7
Config Time Set Handler ...131
Set Handler Code ...132
Performing Config Time Validation with the

ConfigtimeValidate() Method132
Adding a Virtual Primitive at Config Time with

AddPrimitive ..133
Removing a Virtual Primitive at Config Time with

DeletePrimitive ..134
Accessing Data in Attributes at Config Time136
Accessing Data in Other Primitives at Config Time ..136
Adding and Deleting Dynamic Attributes at

Config Time ..136
Run Time Coding...137

Runtime SetHandler ..137
Set Handler Code ...138

SetInfo Structure Event Arguments138
Coding a RuntimeExecute() Method138
Returning an Error Status String at Run Time139

RuntimeGetStatusDesc Event.................................139
Event Handler for Get Status Description..................140
Manipulating Data Quality at Run Time140
Manipulating the Timestamp at Run Time140
Getting Input (I/O) Values Using Utility Primitives

at Run Time..141
Setting Output (I/O) Values Using Utility Primitives

at Run Time..141
Accessing Data in Attributes at Run Time142
Accessing Data in Other Primitives at Run Time142
Adding and Deleting Dynamic Attributes at

Run Time ..143
Supporting AdviseOnlyActive at Run Time................143

AdviseOnlyActiveEnabled144
Other AOT Wrappers for AdviseOnlyActive...............145

IO Utilities ..145
Triggering an Alarm at RunTime................................145

Providing Access to External Attributes (BindTo)145
CMxIndirect..147

Associating an ArchestrA Editor Control with an
Attribute in Code..147
Referencing Attributes Using GetValue and

SetValue ...148
Local References ...149
Referencing Down (child) ...149
Referencing Up (parent)...149
ArchestrA Object Toolkit Developer’s Guide

8 Contents
Array Usage..150
The External Build Process ..150

Command Line Recompile Object150
Command Line Repackage Object...............................151

Advanced Techniques..151
Configuring an ArchestrA Attribute in Code..............152

Specifying the ArchestrA Attribute Array Length .154
Referencing Attributes from the Editor of the Object 154
Local Attribute Wrappers ..155

Appendix B Development Best Practices 157
General Guidelines..157

Naming Conventions..157
Naming Restrictions ..158
ArchestrA Naming Standards and Abbreviations..158
Additional Naming Guidelines160

Creating a Logical Attribute Hierarchy......................161
Using “Unnamed” Primitives161
Using Periods in Attribute Names161

Working with the Logger ...162
Raising Data Change Events.......................................162
Changing or Enforcing the Length of an Array..........162

Guidelines for Config Time Code Development.............163
Ensuring Galaxy Dump/Load Support........................163
Determining the Configuration Status164
Changing an Attribute’s Data Type at Config Time ..164

Guidelines for Run Time Code Development.................165
Returning Warnings During Deployment...................165
Avoiding Application Engine "Overscans"165
OnScan/OffScan Behavior ...165
Dealing with Quality..166

Best Practices for Dealing with Quality167
Dealing with Timestamps..168
Dealing with Outputs on Object Startup169
Dealing with the Quarantine State.............................170
Ensuring Failover Support for Run Time Dynamic

Attributes ...170
Guidelines for Custom Editor Development171

Keeping Validation Rules out of the Editor Code.......171
Creating a Complete Editor...171
ArchestrA Object Toolkit Developer’s Guide

Contents 9
Appendix C Sample Projects 173
The Monitor Object..173

Object Structure ...174
Custom Object Editor...174
Run Time Code ...174

The WatchDog Object..175
Object Structure ...175
Custom Object Editor...177
Config Time Code ...177
Object Run Time Code..177
Stats Primitive Run Time Code...................................178

Appendix D ArchestrA Data Types 179
List of ArchestrA Data Types ...179
Coercion Rules for ArchestrA Data Types181

Coercion from Boolean Values181
Coercion from Integer Values182
Coercion from Float or Double Values182
Coercion from String or Big String Values183
Coercion from Time Values......................................183
Coercion from Elapsed Time Values184
Coercion from MxStatus Values184
Coercion from Data Type Values.............................184
Coercion from Custom Enumeration Values184
Coercion from Custom Structure Values185

Using Data Types Correctly..185
Custom Enumeration vs. Integer185
Absolute and Elapsed Times..185
Internationalized String ..186
Big String..186
Attribute References ..186
Variant (Unspecified) Data Type.................................187
Arrays..187

Appendix E ArchestrA Attribute Categories 189

Appendix F ArchestrA Security Classifications 193

Index ...195
ArchestrA Object Toolkit Developer’s Guide

10 Contents
ArchestrA Object Toolkit Developer’s Guide

11
Welcome

This guide shows you how to create ArchestrA
ApplicationObjects using the ArchestrA Object Toolkit in
Microsoft Visual Studio 2008.

It explains how to use the ArchestrA Object Toolkit Object
Designer and how to configure objects by using this editor. It
does not contain reference information that you may need
when editing your object’s code directly, such as information
on functions, methods and data structures. For this type of
information, see the ArchestrA Object Toolkit Reference
Guide.

You can view this document online or you can print it, in part
or whole, by using the print feature in Adobe Acrobat Reader.

This guide assumes that you are familiar with Wonderware
Application Server. It also assumes that you have at least
some basic experience with C# development using Microsoft
Visual Studio. If you are not familiar with Microsoft Visual
Studio, see the Microsoft documentation.

Documentation Conventions
This documentation uses the following conventions:

Convention Used for

Initial Capitals Paths and file names.

Bold Menus, commands, dialog box names,
and dialog box options.

Monospace Code samples and display text.
ArchestrA Object Toolkit Developer’s Guide

12 Welcome
Technical Support
Wonderware Technical Support offers a variety of support
options to answer any questions on Wonderware products
and their implementation.

Before you contact Technical Support, refer to the relevant
section(s) in this documentation for a possible solution to the
problem. If you need to contact technical support for help,
have the following information ready:

• The type and version of the operating system you are
using.

• Details of how to recreate the problem.

• The exact wording of the error messages you saw.

• Any relevant output listing from the Log Viewer or any
other diagnostic applications.

• Details of what you did to try to solve the problem(s) and
your results.

• If known, the Wonderware Technical Support case
number assigned to your problem, if this is an ongoing
problem.
ArchestrA Object Toolkit Developer’s Guide

13
Chapter 1

Overview and Concepts

This section gives you a general overview of the Wonderware
ArchestrA Object Toolkit and its features. We recommend
that you read this section in its entirety to familiarize
yourself with the key concepts, and then continue with the
other sections for detailed information on specific tasks.

About the ArchestrA Object Toolkit
The ArchestrA Object Toolkit is an add-on to Microsoft
Visual Studio that lets you create custom ArchestrA
ApplicationObjects in C# code. It provides an easy-to-use
graphical Object Designer while still giving you full control
over the object’s source code.

Using the ArchestrA Object Toolkit, you can:

• Create custom ApplicationObjects for use in Wonderware
Application Server without having to deal with its
internals.

• Create a custom editor for your object that allows your
users to easily configure the object’s attributes using the
Application Server IDE.

• Create reusable primitives, code modules that you can
reuse in multiple custom ApplicationObjects.
ArchestrA Object Toolkit Developer’s Guide

14 Chapter 1 Overview and Concepts
• Easily navigate to all sections of your object’s code using
an Object Design View.

• Configure object attributes using an easy-to-use Object
Designer.

• Build .aaPDF files and automatically import, instantiate
and deploy them in your Galaxy for testing.

Note You can not create DeviceIntegration Objects with this
release of the ArchestrA Object Toolkit. For information on
creating DeviceIntegration Objects, please contact your
Wonderware distributor.

About ApplicationObjects and Primitives
ApplicationObjects are domain-specific objects that
represent plant equipment and instrumentation such as
pumps, valves, temperature transmitters, or conveyors. They
usually get their source data from other objects, such as
DeviceIntegration objects.

Wonderware Application Server already includes some basic
ApplicationObject templates, such as the $AnalogDevice
object for a simple analog device. Using the ArchestrA Object
Toolkit, you can create complex custom ApplicationObjects
that represent specific types of equipment, for example, a
pump system. These ApplicationObjects support various
events that allow you to execute custom config time and run
time code. You can also create a custom object editor for easy
configuration.

Attributes are the data items of an ApplicationObject or
primitive. By reading from and writing to attributes, objects
can exchange data with each other. (Unless specifically
noted, when this manual talks about “attributes,” we mean
these ArchestrA attributes, not C# attributes.)
ArchestrA Object Toolkit Developer’s Guide

About ApplicationObjects and Primitives 15
Primitives are modules containing code and attributes. Like
the main ApplicationObject, they have their own config time
and run time event handlers as well. You can think of them
as the “building blocks” for your object. By “modularizing”
your object into primitives, you can create a clear, logical
structure and dynamically enable or disable functionality as
needed. There are two types of primitives:

• Local primitives are defined locally in an object and are
only used in that single object.

• Reusable primitives are “stand-alone” primitives that can
be reused in multiple ApplicationObjects. Organizing
common functionality into reusable primitives makes it
easier to maintain your code. The ArchestrA Object
Toolkit includes predefined utility primitives for various
tasks, such as historizing values to a database. You can
also create custom reusable primitives for your objects.

Both local and reusable primitives can be made “virtual.”
This allows you to dynamically add and delete instances of
the primitive at config time. If you don’t add any instances of
the primitive, it doesn’t become part of the object instance
and is not deployed at run time. This reduces the run time
processing load because only the functionality that is
actually needed gets deployed.

All ApplicationObjects automatically contain the “Common”
primitive, which provides common attributes and
functionality that all objects need (for example, attributes for
setting the object OnScan/OffScan, etc.) The Common
primitive is hidden, and you can’t edit it in any way.
ArchestrA Object Toolkit Developer’s Guide

16 Chapter 1 Overview and Concepts
For example, a simple ApplicationObject might have the
following structure:

The structure of an ApplicationObject or primitive, as
composed of its attributes and child primitives, is also called
its “shape.”

Sample ApplicationObject

Common primitive (hidden)

Contains attributes and logic
for default object functionality

Attribute 1
Attribute 2

… (more attributes) ...

Local primitive 1

Contains additional logic and
attributes

Embedded reusable primitive 1

Contains additional logic and
attributes

… (more primitives) ...

Config / run time event handlers
ArchestrA Object Toolkit Developer’s Guide

Workflow: Creating an ApplicationObject or Reusable Primitive 17
Workflow: Creating an ApplicationObject or
Reusable Primitive

The basic steps to create an ApplicationObject or reusable
primitive are as follows:

1 Planning. When developing an ApplicationObject, you
should consider certain requirements and best practices.
For more information, see Chapter 2, Object Design
Considerations.

2 Creating a project in Visual Studio. Working with an
ArchestrA Object Toolkit project is similar to working
with other projects in Visual Studio. For more
information, see Chapter 3, Working with Projects.

3 Internationalizing the object (optional). If your object
will be used in different localized environments, you can
define multilingual strings for your object’s messages and
other text. At run time, the object can then use the
appropriate local language strings for the environment
it’s used in. It is best to internationalize any required
messages right from the start and then refer to them as
required as you write your code. For more information,
see Chapter 7, Internationalizing Objects.

4 Defining the object or primitive. In this step, you
configure basic object properties and add the attributes
(data items) that your object or primitive will use. You
also add any code procedures that your object will need,
such as run time set handlers or event handlers. Finally,
you create a custom object editor that your users can use
to configure the object’s properties in the Application
Server IDE.
For more information on defining ApplicationObjects and
reusable primitives, see Chapter 4, Defining an
ApplicationObject, and Chapter 5, Defining a Reusable
Primitive. For information on configuring attributes, see
Chapter 6, Configuring Attributes.
When coding your object, follow the “best practices” and
guidelines outlined in Appendix B, Development Best
Practices.

Plan Create
Project Internationalize Define Build Test &

Debug
ArchestrA Object Toolkit Developer’s Guide

18 Chapter 1 Overview and Concepts
5 Building the object. In this step, you create an .aaPDF
object file that contains your custom ApplicationObject
(or an .aaPRI file if you’re developing a reusable
primitive). You can then import and use the object in
Application Server. You can also import, instantiate and
deploy the object automatically as part of the build
process, and you can configure various build options. For
more information, see Chapter 8, Building and
Versioning Objects.

6 Testing and debugging the object. If you encounter
problems while testing your object, see Chapter 9,
Debugging Objects, for troubleshooting hints.

The ArchestrA Object Toolkit includes some sample projects
to help you get started. For more information, see Appendix
C, Sample Projects.

Important To build objects on Windows Vista and later operating
systems, you must run Visual Studio with administrative
privileges.

Tour of the User Interface
The user interface of the ArchestrA Object Toolkit consists of:

• Additions to the regular Microsoft Visual Studio
user interface: a toolbar, an Object Design View and a
Logger view. By default, these are always visible when an
ArchestrA Object Toolkit project is opened in Visual
Studio.

• An Object Designer window that you can open and
close as required while working with an ArchestrA Object
Toolkit project.

The following sections describe each of these components.
ArchestrA Object Toolkit Developer’s Guide

Tour of the User Interface 19
Additions to the Visual Studio Interface
When you create or open an ArchestrA Object Toolkit project
in Visual Studio, the Visual Studio environment shows extra
items.

Note When you create your first project after installing the
ArchestrA Object Toolkit, the Object Design View and Logger View
are not docked. We recommend that you dock the Object Design
View to the left of the Visual Studio window, and the Logger view
to the bottom (as shown above).

ArchestrA Object Toolkit Toolbar
The ArchestrA Object Toolkit toolbar lets you access all main
features of the ArchestrA Object Toolkit. The individual
features and icons are described throughout this
documentation.

Logger ViewObject Design View

Toolbar
ArchestrA Object Toolkit Developer’s Guide

20 Chapter 1 Overview and Concepts
Object Design View
The Object Design View allows you to easily navigate your
object’s code. Double-clicking on an item in the Object Design
View automatically opens the code section that controls the
respective aspect of your object. For example, the Object
Design View might look like this:

• Attributes: Double-click an attribute name to see its
definition in the code.

Attribute

Config time /
run time events

Custom editor
Object dictionary

Attributes, set
handlers and

events for a child
primitive

Set handlers and
”Advise Only
Active” code
ArchestrA Object Toolkit Developer’s Guide

Tour of the User Interface 21
• Attribute set handlers and “Advise Only Active”
code: Double-click Configtime Set Handler or Runtime Set
Handler to open the code section that contains the config
time or run time set handler for an attribute (if enabled).
Double-click Advise only Active to open the “Advise only
Active” code section for an attribute (if enabled)

• Config time/run time events: Double-click an event
name to open the code section linked to the event. Once
you have added custom code for an event, its name is
shown in bold type.

• Custom editor: Double-click Editor to open the object’s
custom editor in the Visual Studio design view.

• Object dictionary: Double-click Dictionary to edit the
object dictionary. Expand this item to see the content of
the dictionary.

To refresh the Object Design View after making changes to
the code, click its Refresh icon. This automatically validates
the code as well.

To hide or re-open the Object Design View, click the Object
Design View icon in the ArchestrA Object Toolkit toolbar.

Logger View
The Logger view shows the same ArchestrA Logger messages
that you would see in the ArchestrA Log Viewer. Check this
view for any errors and warnings that may be reported by the
ArchestrA Object Toolkit. The Logger view is intended for
quick reference. It does not offer the full functionality of the
ArchestrA Log Viewer.

To hide or re-open the Logger View, click the Logger View icon
in the ArchestrA Object Toolkit toolbar.
ArchestrA Object Toolkit Developer’s Guide

22 Chapter 1 Overview and Concepts
Object Designer Window
The Object Designer lets you easily edit and configure your
object’s general properties, attributes and primitives. We
recommend that you edit your objects using this editor.
However, you can always edit all aspects of your object
directly in the underlying code.

The code and the data you see in the Object Designer are
always synchronized. For example, when you change the
properties of an attribute in the code, you see the updated
property values the next time you open the Object Designer,
and vice versa.

Opening the Object Designer
You can open and close the Object Designer as required while
working with your project. You can also have the Object
Designer open automatically when you open an ArchestrA
Object Toolkit project in Visual Studio.

To open the Object Designer

Click the Object Designer icon in the ArchestrA Object
Toolkit toolbar.

To have the Object Designer open automatically when opening
a project

1 Open the Object Designer.
2 In the bottom left corner of the Object Designer, select

the Automatically launch editor check box.
3 Click OK.
ArchestrA Object Toolkit Developer’s Guide

Tour of the User Interface 23
Object Designer Panes
The Object Designer contains the following panes:

• Shape pane: This pane shows the structure (“shape”) of
your object. You can edit your object here by adding and
deleting attributes and primitives.

• Configuration pane: Use this pane to configure the
item that is currently selected in the Shape pane.

• Attributes pane: This pane shows a list of all custom
attributes in your object, including their configuration.
You can expand this pane to see more information at
once. Also, you can choose to see config time or run time
attributes only. The abbreviated column headings mean
the following:

Configuration

Shape

Attributes

Heading Description

FA “Frequently Accessed” option is enabled

CQ “Calculated Quality” option is enabled

Cfg Config time set handler is enabled

Run Run time set handler is enabled

Al Attribute is alarmed

His Attribute is historized
ArchestrA Object Toolkit Developer’s Guide

24 Chapter 1 Overview and Concepts
ArchestrA Object Toolkit Developer’s Guide

25
Chapter 2

Object Design Considerations

Before you start defining your object, you should plan its
features and structure. You should:

• Decide how to design the object’s structure by using
primitives.

• Make a list of the attributes that your object and any of
its primitives will need, and develop a naming structure.

Guidelines for Designing the Structure of
Control-Oriented Objects

This section describes basic guidelines for developing objects
that perform feedback control actions at the supervisory
level. The AnalogDevice, configured as an AnalogRegulator,
and the DiscreteDevice objects that are provided with
Wonderware Application Server provide good working
examples of how to design such objects.

Developing objects in accordance with these guidelines
ensures that objects are structured in a manner that fits well
within the overall architecture of ArchestrA, and that they
offer a consistent structure to end users.
ArchestrA Object Toolkit Developer’s Guide

26 Chapter 2 Object Design Considerations
In general, you should separate control objects into three
primary blocks: Feedback processing, Control processing,
and one or more Alarm processing blocks.

• The Feedback processing block includes the attributes
and logic for reading field inputs and processing them to
derive a primary calculated result that is placed into an
attribute called the “PV” (process value). The feedback
processing should also include a “PVMode” attribute that
determines whether the PV is calculated automatically or
set manually.

• The Control processing block includes the attributes and
logic for receiving setpoints or commands that result in
output control actions. The control processing should also
include a “CtrlMode” (control mode) attribute that
determines whether the control actions are commanded
manually or cascaded from another object. The run time
set handler for the control attributes can then reject set
requests coming from disallowed sources.

• The Alarm processing block(s) includes the attributes
and logic for alarm detection for the feedback and control
blocks. The feedback alarming determines whether the
input(s) are abnormal or unexpected. The control
alarming determines whether control actions are failing
or have had unexpected results. You can implement these
blocks of logic as part of the Feedback or Control
processing blocks or separately, depending on what
makes sense for your object.

By using primitives, you can model these multiple blocks in a
clean and easy way. The ArchestrA Object Toolkit also allows
you to develop “virtual” primitives that allow you to add
primitive instances as required at config time. For more
information, see Working with Virtual Primitives on page 43.

In many objects, it will be most appropriate to separate the
object into a top-level primitive that brings in an optional
child Control virtual primitive. When the user enables
Control functionality, then the config time logic adds the
Control primitive dynamically. Since alarms are commonly
optional, it also makes sense to use virtual primitives for one
or more blocks of alarm detection functionality. The
$AnalogDevice object that is provided with Application
Server provides a good example of these concepts.
ArchestrA Object Toolkit Developer’s Guide

Guidelines for Designing the Structure of Control-Oriented Objects 27
Limitations to the Complexity of Primitive
Hierarchies

When you arrange local primitives in a hierarchy (that is,
embed primitives within other primitives, and so on), there is
a limit to the number of levels the hierarchy can have.

When you add a local primitive to an ApplicationObject, the
ArchestrA Object Toolkit adds a subfolder to the solution
folder that contains the code files for that primitive. When
you add another primitive to that primitive, it creates a
subfolder in the primitive subfolder, and so on. Each level in
the primitive hierarchy corresponds to another level of
folders in the ArchestrA Object Toolkit solution folder. (For
more information on the content of the solution folder, see
Creating a Project on page 32.)

However, the Windows operating system imposes a limit on
the maximum length of a file path. On current Windows
versions, this limit is 260 characters for the complete path
including all formatting characters. No path to any code file
in any ArchestrA Object Toolkit project folder may exceed
this limitation. Therefore, there is a limit to how many levels
of primitives you can use.

The exact number of levels depends on the path length of the
base ArchestrA Object Toolkit solution folder and on the
length of the primitive names. The shorter the primitive
names, the shorter the folder names, and the more levels you
can use.

Primitive embedded
in object

Primitive embedded
in primitive
ArchestrA Object Toolkit Developer’s Guide

28 Chapter 2 Object Design Considerations
Planning Attribute Usage
Attributes are the data items of an object or primitive. By
reading from and writing to attributes, objects can exchange
data with each other. In addition, your objects can also have
Inputs and Outputs to communicate with other attributes in
the ArchestrA environment.

Before you start developing your object, you should
determine the following:

• Which attributes do you need? As a guideline, only
expose those data items as attributes that your users
actually need to see and/or change. For data items that
you’ll only need locally or temporarily in the object’s code,
simply use local C# variables. Those attributes that you
do expose should be organized and named in a way that is
intuitive to your users. Also determine whether your
attributes will require I/O capabilities.

• What level of access should users have to these
attributes? There might be attributes that are only
relevant at config time, but not at run time. For other
attributes, you might want to allow run time write access
only to users with certain privileges.

In the ArchestrA Object Toolkit, you can use three strategies
to control attribute structure and access:

• Developing a logical naming hierarchy. You can use
named and unnamed primitives as well as structured
attribute names to organize attributes logically and only
expose those attributes that the user really needs. For
more information, see Creating a Logical Attribute
Hierarchy on page 161.

• Security classifications. By specifying different
security classifications for individual attributes, you can
restrict attribute access to users with the right privileges.
For more information, see Appendix F, ArchestrA
Security Classifications.

• Attribute categories. By using different attribute
categories, you can specify whether or not an attribute
should be available and readable/writable at config time
and/or run time. For more information, see Appendix E,
ArchestrA Attribute Categories.
ArchestrA Object Toolkit Developer’s Guide

Performance Considerations 29
Performance Considerations
There is no arbitrary limit to the number of primitives,
attributes, and inputs/outputs that you can add to your
ApplicationObject. As with all software, the more complex
your object gets, the more resources it will need. Depending
on your system resources, there will eventually be a practical
limit where performance becomes unacceptable. However,
under normal circumstances, this should not be an issue
except for very large and complex ApplicationObjects.

For additional restrictions on the complexity of primitive
hierarchies, see Limitations to the Complexity of Primitive
Hierarchies on page 27.
ArchestrA Object Toolkit Developer’s Guide

30 Chapter 2 Object Design Considerations
ArchestrA Object Toolkit Developer’s Guide

31
Chapter 3

Working with Projects

When creating ApplicationObjects or reusable primitives,
you manage your development work in projects. ArchestrA
Object Toolkit projects are simply Visual Studio projects of a
special type. You create and manage them just like other
Visual Studio projects.

You create a project for every ApplicationObject or reusable
primitive that you want to create. Visual Studio then creates
a solution folder with subfolders for the projects
corresponding to each of your object’s components and
primitives. That solution folder contains all code related to
the ApplicationObject or reusable primitive you’re
developing.
ArchestrA Object Toolkit Developer’s Guide

32 Chapter 3 Working with Projects
Creating a Project
When you create a project, the ArchestrA Object Toolkit
creates all files and basic structures that you need to define
your ApplicationObject or reusable primitive. The steps to
create a project are the same for ApplicationObjects and
reusable primitives.

To create a project

1 Open Microsoft Visual Studio.
2 On the File menu, point to New and then click Project.

The New Project dialog box appears.

3 In the Project types list, expand Visual C# and click
ArchestrA.

4 In the Templates pane, click ArchestrA Object.
5 In the Name box, enter a name for the project. This is also

used as the name of your object. You can change the
object name later.

6 In the Location box, enter the path where you want the
project folder to be created.

7 In the Solution list, leave Create New Solution selected.
Leave the Create directory for solution check box selected
as well.

8 Click OK.
ArchestrA Object Toolkit Developer’s Guide

Opening an Existing Project 33
Visual Studio creates a solution folder for the ArchestrA
Object Toolkit project. The solution folder contains the
following subfolders:

When you add a local primitive to an ApplicationObject, the
ArchestrA Object Toolkit adds a subfolder to the solution
folder that contains the code files for that primitive. The
primitive folder, in turn, has different subfolders for config
time and run time code similar to the ones described above.
When you add another primitive to that primitive, the
ArchestrA Object Toolkit creates a subfolder in the primitive
subfolder, and so on. For limitations due to this approach, see
Limitations to the Complexity of Primitive Hierarchies on
page 27.

Opening an Existing Project
When you open an existing ArchestrA Object Toolkit project
in Visual Studio, the ArchestrA Object Toolkit windows
appear, and all related commands are available. When you
open any other type of project, these windows and commands
are not available, except for some commands that are not
project-specific.

To open an existing project

1 On the File menu, point to Open and then click
Project/Solution. The Open Project dialog box appears.

2 Select the solution file you want to open and click Open.
Visual Studio opens the project.

Subfolder Contents

<Project name> Code files that define the object
shape and attributes

<Project
name>Configtime

Code files for the object’s config
time (“package”) code

<Project
name>Editor

Code files for the custom object
editor UI and code

<Project
name>Runtime

Code files for the object’s run time
code

Output Build output (.aaPDF or .aaPRI
files, .aaDEF file). This folder is
created when you build your project
for the first time.
ArchestrA Object Toolkit Developer’s Guide

34 Chapter 3 Working with Projects
Moving or Deleting Projects
To move or delete an ArchestrA Object Toolkit project, simply
move or delete the entire Visual Studio solution folder. When
moving a project, pay attention to the following:

• The Windows folder structure only allows paths to be a
certain length. If you move a project with a long
hierarchy of child primitives (which are stored in nested
subfolders) to an already long path, some of the paths
may become too long.

• After you have moved the project, check your code for any
relative references to dependent files that may need
updating.

• If you are moving a project from one computer to another,
make sure that all references are available on the new
computer.

Editing Projects in Code or in the ArchestrA
Object Toolkit Designer

The ArchestrA Object Toolkit provides a graphical Object
Designer that makes it easy to configure the properties and
attributes of your ApplicationObject (or reusable primitive).
We recommend that you edit your objects using this Object
Designer. However, you can always edit all aspects of your
object directly in the underlying code.

The code and the data you see in the Object Designer are
always synchronized. For example, when you change the
properties of an attribute in the code, you see the updated
property values the next time you open the Object Designer,
and vice versa.

This manual describes how to edit ApplicationObjects and
reusable primitives by using the Object Designer. For more
information on editing properties and attributes in code, see
the ArchestrA Object Toolkit Reference Guide.

For information on opening the Object Designer interface,
see Object Designer Window on page 22.
ArchestrA Object Toolkit Developer’s Guide

35
Chapter 4

Defining an ApplicationObject

Once you have created an ArchestrA Object Toolkit project,
you can start defining your object. This section explains how
to configure object properties and add primitives using the
Object Designer, and how to add custom code using the
Object Design View. For information on configuring
attributes, see Chapter 6, Configuring Attributes.

Common steps when defining your object are:

• Configuring the object’s names and description. See
Configuring the Object's Names and Description on
page 36.

• Adding code to the object’s various event handlers. See
Configuring Event Handlers on page 37.

• Working with primitives to structure your object. See
Working with Primitives on page 40.

• Adding a custom object editor that allows end users to
configure the object in the ArchestrA IDE. See Adding a
Custom Object Editor on page 47.

• Configuring associated files in case your object uses any
external files or assemblies. See Configuring Associated
Files on page 49.
ArchestrA Object Toolkit Developer’s Guide

36 Chapter 4 Defining an ApplicationObject
• Configuring other object properties, including “Advise
Only Active” support, the object’s behavior in the
ArchestrA IDE, and dump/load or failover support for
dynamic attributes. See Configuring Additional Object
Properties on page 57.

• Adding object help that end users can access from the
ArchestrA IDE. See Adding Object Help on page 65.

If you have an existing ApplicationObject developed with a
previous version of the ArchestrA Object Toolkit, you can
easily import its shape by importing the object’s .aaDEF file.
For more information, see Importing an .aaDEF File from a
Previous Object Version on page 67.

You can also configure object properties directly in the code.
For more information, see the ArchestrA Object Toolkit
Reference Guide.

Configuring the Object's Names and
Description

You can configure an object’s internal and external names
and give it a meaningful description. The internal name is
the name by which you can refer to the object from within its
code. The object’s external name and description are used in
the ArchestrA IDE. It is also used to create default names for
object instances.

You can also configure an object’s vendor name. This name
shows the end user who created the object and is used to
uniquely identify the object for upgrade purposes.

For more information on ArchestrA naming conventions and
restrictions, see Naming Conventions on page 157.

Note For brevity, do not use the word “Object” or “Template” in
an object’s name.

To configure an object’s names and description

1 Open the Object Designer.
2 In the Shape pane, click the topmost node. The object

properties appear in the Configuration pane.
3 In the External Name box, enter the object’s external

name. The name must be ArchestrA compliant. The
maximum length is 31 characters.

4 In the Internal Name box, enter the object’s internal name.
The name must be C# compliant. The maximum length is
329 characters.
ArchestrA Object Toolkit Developer’s Guide

Configuring Event Handlers 37
5 In the Vendor Name box, enter the vendor name. This
name must not contain double-byte characters or any
characters that are invalid in Windows file names.

6 In the Description box, enter the object description. The
maximum length is 1024 characters.

7 Click OK.

Configuring Event Handlers
Event handlers are the main place where you will add the
custom code for your ApplicationObject. The object and each
of its local primitives have a variety of config time and run
time events that you can link with custom handler code. The
following sections describe which events exist, and how you
can associate them with code.

You can also execute custom code when the value of an
attribute is changed at config time or run time. For more
information, see Configuring Config Time Set Handlers on
page 74 and Configuring Run Time Set Handlers on page 76.

Configuring Config Time Event Handlers
ArchestrA ApplicationObjects support a number of “config
time” events that are triggered when a user works with the
object in the ArchestrA IDE. By implementing handlers for
these events, you can link configuration actions with custom
code. For example, you could execute certain code after an
object instance is created.

Note Config time event handler code is executed only on the
Galaxy Repository node. Therefore, it cannot directly interact
with the user. For example, if you call a message box within an
event handler, the message box appears on the Galaxy Repository
node.

All ApplicationObjects have the following standard config
time event handlers enabled:

Event Occurs

Intialize When the object is initialized. Use this
event handler for any custom
initialization code.

Migrate When derived templates or instances
are migrated. See Migrating Objects on
page 119.
ArchestrA Object Toolkit Developer’s Guide

38 Chapter 4 Defining an ApplicationObject
To add code to a config time event handler

1 In the Object Design View, expand the Configtime folder.
2 Double-click the event name. The code section for the

config time event handler appears.
3 Enter the code for the config time event handler. When

you are done, save your changes.

PostCreate After the object (instance or derived
template) is created.

PreValidate Before the object is validated (when the
user has edited its configuration and
saves it).

Validate When the object is validated. Use this
event handler for any custom
validation code (e. g. checking for
invalid combinations of attribute
values).

Event Occurs
ArchestrA Object Toolkit Developer’s Guide

Configuring Event Handlers 39
Configuring Run Time Event Handlers
ArchestrA ApplicationObjects support a number of run time
events that are triggered as the object is executed at run
time. By implementing handlers for these events, you can
link custom code with these events. For example, you could
execute certain code on every scan cycle.

All ApplicationObjects have the following run time event
handlers:

To add code to a run time event handler

1 In the Object Design View, expand the Runtime folder.
2 Double-click the event name. The code section for the run

time event handler appears.
3 Enter the code for the run time event handler. When you

are done, save your changes.

Event Occurs

Execute On every scan cycle of the hosting
AppEngine while the object is OnScan.

GetStatusDesc When the run time component requests
a detailed message for an error, e. g.
after a set handler returns a failure.

Initialize After the object is created in run time
(usually after deployment, but also
after a failover or after the bootstrap is
restarted). Occurs before the Startup
event. No attribute information is
available at this time.

SetScanState When the object’s scan state
(OnScan/OffScan) is changed.

Shutdown When the object is shutting down
(usually after the object is set to
OffScan, but during a failover OffScan
may not be set). This event does not
occur if the object goes off the network
during a network failure.

Startup When the object is being started (after
the Initialize event and before it goes
OnScan). You can use the event’s
startup context to find out whether the
object is starting up after a failover or
other reasons.
ArchestrA Object Toolkit Developer’s Guide

40 Chapter 4 Defining an ApplicationObject
Working with Primitives
By using primitives, you can structure your object’s code and
attributes logically and efficiently. If you define a primitive
as virtual, you can also enable or disable instances of it as
required at config time. For more information, see Working
with Virtual Primitives on page 43.

Note When you arrange local primitives in a hierarchy (that is,
embed primitives within other primitives, and so on), there is a
limit to the number of levels the hierarchy can have. For more
information, see Limitations to the Complexity of Primitive
Hierarchies on page 27.

Adding a Local Primitive
Local primitives are defined locally in an object and are only
used in that single object.

To add a local primitive

1 Open the Object Designer.
2 In the Shape pane, select the location where you want to

add the primitive. For example, if you want to add a
primitive to another primitive, select that primitive or
one of its attributes.

3 In the Shape pane, click the down arrow next to the Add
icon.

4 Click Local Primitive. The properties of the new primitive
are shown in the Configuration pane.

5 In the External Name box, enter a unique external name
for the primitive. This is the name by which other objects
can access the primitive’s attributes. The name must be
ArchestrA compliant. For applicable restrictions, see
Naming Conventions on page 157.
You can also leave it blank. For more information, see
Naming Considerations for Primitives on page 46.

6 In the Internal Name box, enter a unique internal name
for the primitive. This is the name by which you can refer
to the primitive in the object’s code. The name must be C#
compliant. The maximum length is 329 characters.

7 If required, select the Dump/Load support for Dynamic
Attributes & Reusable Primitives and Failover support for
Runtime Dynamic Attributes check boxes. For more
information on these options, see Configuring
Dump/Load Support for Dynamic Attributes and Virtual
Primitives on page 58 and Configuring Failover Support
for Run Time Dynamic Attributes on page 59.
ArchestrA Object Toolkit Developer’s Guide

Working with Primitives 41
8 Select the Virtual check box if the primitive should be
virtual. For more information, see Working with Virtual
Primitives on page 43.

9 If required, select the Advanced Configuration check box to
specify additional options:
a In the Execution Group list, select the execution group

for the primitive. This determines the execution order
of the object’s primitives within each scan of the
AppEngine. For more information, see Configuring
the Object’s Primitive Execution Order on page 63.

b If required, use the Primitive GUID, Package CLSID and
Runtime CLSID boxes to specify that the primitive
should use other assemblies than the ones
automatically generated by the ArchestrA Object
Toolkit. For more information, see Associating
Different Assemblies with an Object on page 64.

10 If required, configure associated files for the primitive.
This works the same as configuring associated files for
the main ApplicationObject. For more information, see
Configuring Associated Files Manually on page 55.

11 Click OK, or go back to Step 2 to add more primitives.
The Object Design View now shows the new primitive in the
tree. It has its own sub-entries for attributes, config time and
run time events. You can configure custom code for the
primitive’s events and set handlers in the same way as you
would configure it for the object itself.

Adding a Reusable Primitive
A reusable primitive is a primitive that is intended to be
included into multiple objects. By implementing common
features as reusable primitives, you avoid code duplication.
You can also add multiple instances of a reusable primitive to
the same object.

Using the ArchestrA Object Toolkit, you can create your own
custom reusable primitives. For more information, see
Chapter 5, Defining a Reusable Primitive.

Standard reusable primitives installed by Wonderware
Application Server are available at C:\Program
Files\Common Files\ArchestrA\ReusablePrimitives\
ArchestrA.

On a 64-bit operating system, standard reusable primitives
will be installed at C:\Program Files (x86)\Common
Files\ArchestrA\ReusablePrimitives\ArchestrA.
ArchestrA Object Toolkit Developer’s Guide

42 Chapter 4 Defining an ApplicationObject
Technically, the Inputs and Outputs as well as the Alarm
and History extensions that you can add in the Object
Designer are reusable primitives as well. However, there are
separate mechanisms in the Object Designer for adding and
configuring these primitives. For more information, see:

• Adding Inputs and Outputs on page 89 for information on
Inputs and Outputs

• Historizing an Attribute on page 79 for information on
the History primitive

• Making an Attribute Alarmable on page 83 for
information on the Alarm primitive

To add a reusable primitive to your object

1 Open the Object Designer.
2 In the Shape pane, select the location where you want to

add the primitive. For example, if you want to add a
primitive to another primitive, select that primitive or
one of its attributes.

3 In the Shape pane, click the down arrow next to the Add
icon.

4 Click Reusable Primitive. The Add Existing (Predefined)
Primitive dialog box appears.

5 Select the .aaPRI file of the reusable primitive you want
to add. Click Open.

6 The reusable primitive and its attributes appear in the
Shape pane. The primitive’s properties are shown in the
Configuration pane.

7 In the External Name box, enter a unique external name
for the primitive. This is the name by which other objects
can access the primitive’s attributes. The name must be
ArchestrA compliant. For applicable restrictions, see
Naming Conventions on page 157.
You can also leave it blank. For more information, see
Naming Considerations for Primitives on page 46.

8 In the Internal Name box, enter a unique internal name
for the primitive. This is the name by which you can refer
to the primitive in the object’s code. The name must be C#
compliant. The maximum length is 329 characters.

9 Select the Virtual check box if the primitive should be
virtual. For more information, see Working with Virtual
Primitives on page 43.

10 Click OK, or go back to Step 2 to add more primitives.
ArchestrA Object Toolkit Developer’s Guide

Working with Primitives 43
The Object Design View now shows the new primitive in the
tree. Unlike with a local primitive, you can’t configure
custom code for the primitive’s events and set handlers
because that code is already configured in the reusable
primitive itself.

Overriding and Locking Attributes of Reusable
Primitives
When you include a reusable primitive into another primitive
or object, you may be able modify the default values and
security classification of its attributes. This is called
overriding.

When appropriate, you can also lock these overridden values,
which prevents them from being changed after the object is
imported into a Galaxy. A common example is an object that
is designed to monitor only Boolean items from the field. To
do so, include an Input Primitive, override its “data type”
attribute to Boolean, and lock it.

Deleting a Primitive
You can delete primitives from your object. In that case, you
must check whether the object still contains any references to
the deleted primitive or its attributes, and change those
references accordingly.

To delete a primitive

1 Open the Object Designer.
2 In the Shape pane, select the primitive you want to delete.
3 Click the Delete icon. A confirmation message appears.
4 Click Yes to delete the primitive.

Working with Virtual Primitives
You can use a virtual primitive to implement a block of
optional functionality that can be enabled as required by an
end user. This ensures that only required primitives are
actually deployed at run time, reducing overhead and
processing load.

You design and implement a virtual primitive in the same
way as any other primitive. However, from the end user’s
perspective, a virtual primitive does not appear to be part of
the object by default. Instead, it is only made "real" at
configuration time by programmatically adding instances of
the virtual primitive to the object as needed. For more
ArchestrA Object Toolkit Developer’s Guide

44 Chapter 4 Defining an ApplicationObject
information, see the documentation on the AddPrimitive and
DeletePrimitive methods in the ArchestrA Object Toolkit
Reference Guide.
ArchestrA Object Toolkit Developer’s Guide

Working with Primitives 45
For example, you might want to provide an optional Hi alarm
for an object’s PV (process value). To do this, you would add a
virtual primitive that contains the alarming functionality,
and an attribute that enables or disables the Hi alarm. When
the user enables that attribute at config time, you create an
instance of the virtual primitive via a call in the attribute’s
config time set handler. If the attribute stays disabled, you
never create an instance of the primitive, and the primitive
never gets deployed.

You can create multiple instances of a virtual primitive in
the same object. Each instance behaves like a separate
primitive. For example, you could re-use the same Hi alarm
primitive for multiple attributes by simply creating multiple
instances of it. However, when you add the instances, you
must provide a unique external and internal name for each
instance to avoid naming conflicts.

For an example of using virtual primitives, see the WatchDog
sample object. It uses a virtual primitive for providing
optional statistics calculations. See Appendix C, Sample
Projects.

You can also use virtual primitives to define “optional”
attributes and “arrays” of related primitives. For more
information, see the following sections.

Defining "Optional" Attributes Using Virtual
Primitives
Using virtual primitives, you can include primitives (and
their attributes) in an object only when they are really
necessary. For example, if the monitoring of a particular
input is optional, you can mark the input primitive as virtual
and include it in the object only when a certain attribute
(e. g. “EnableInputMonitoring”) is set to true. To do this, you
would include logic for creating or removing an instance of
the virtual primitive in that attribute’s config time set
handler.

"Arrays" of Related Primitives
Using the same technique as described above, you can easily
monitor a variable number of inputs (e. g. 0 to 4). The only
difference is that you create more than one instance of the
virtual primitive. Each primitive instance must have unique
internal and external names so its attribute names do not
collide with those of the other primitive instances.
ArchestrA Object Toolkit Developer’s Guide

46 Chapter 4 Defining an ApplicationObject
Naming Considerations for Primitives
This section explains how to use a primitive’s names and
what happens if you change them.

A primitive has two names: its internal name and its external
name. In many cases, these two names will be identical.

• The internal name is used to refer to the primitive from
config time and run time code. Avoid changing this name
after you’ve used it in code. If you do change it, you must
manually update any references where the primitive
name is passed as a string.

Keep this name as short as possible. Long names can
make source file and folder names excessively long, and
may increase memory usage at run time.

• The external name determines the names of the
primitive’s attributes. For example, if you have an
attribute named “Condition” in a primitive named
“AlarmHi,” you can access the attribute as
“AlarmHi.Condition” in the object’s namespace. If you
change this name, references in the config time or run
time code are not affected. However, you must update
any references where it is passed as a string, e. g. in the
object’s custom editor.

A primitive’s external name can be empty. In this case,
the external name does not become part of the namespace
that is visible to the end user. In the example above, if
you have an attribute named “Condition” in a primitive
with an empty external name, you can simply access that
attribute as “Condition” in the object’s namespace.
However, in that case, you must pay extra attention that
no naming conflicts occur between the primitive’s
attributes and any attributes of the containing object or
primitive.
ArchestrA Object Toolkit Developer’s Guide

Adding a Custom Object Editor 47
Adding a Custom Object Editor
Note This section is about creating the custom object editor for
end users to configure your object in the ArchestrA IDE. For
information on the ArchestrA Object Toolkit Object Designer that
you use to define your object in Visual Studio, see Object
Designer Window on page 22.

By creating a custom object editor, you provide a graphical
interface for configuring your object’s attributes. The custom
object editor appears when the user opens the object for
configuration in the ArchestrA IDE. It should allow the user
to configure all configurable attributes of the object and its
primitives.

You can create multiple custom tab pages for your object
editor. In the ArchestrA IDE, these custom tab pages appear
alongside the standard tab pages that are shown for every
object (Object Information, Scripts, UDAs, etc.). You can
disable these standard tabs if you don’t need them. See
Configuring the Object’s IDE Behavior on page 61.

Your custom object editor can use standard controls from the
Visual Studio toolbox or special ArchestrA controls. For
information on adding the ArchestrA controls to Visual
Studio, see Adding ArchestrA Controls to the Visual Studio
Toolbox on page 48.

Your editor can also include controls for configuring
attributes of virtual primitives. In the ArchestrA IDE, these
controls are automatically enabled or disabled depending on
whether the virtual primitive instance exists or not.

To create the custom object editor

1 In the Object Design View, double-click the Editor folder.
The custom object editor appears in the Visual Studio
Design view. It already contains a tab page. This is the
first custom tab page that appears when you edit your
object in the ArchestrA IDE.
ArchestrA Object Toolkit Developer’s Guide

48 Chapter 4 Defining an ApplicationObject
2 Add controls to the tab page. You can use Visual Studio’s
standard UI design features for this. You can also:
• Drag attributes from the Object Design View onto the

tab page. The ArchestrA Object Toolkit then
automatically adds a standard label as well as
ArchestrA controls for editing the value, security
classification and lock status of that attribute.

• Drag object dictionary items from the Object Design
View onto the tab page. The ArchestrA Object Toolkit
then automatically adds a label that will show the
correct localized value at run time.

3 If required, add more tab pages.
4 When you are done, save your work.

Adding ArchestrA Controls to the Visual Studio
Toolbox

You can add special ArchestrA controls to the Visual Studio
toolbox so you can use them in your custom object editor.

To add ArchestrA controls to the Visual Studio toolbox

1 Right-click the Visual Studio toolbox and then click Add
Tab. A new tab appears in the toolbox. Give it a
descriptive name, such as “ArchestrA.”

2 Right-click the new tab and then click Choose Items. The
Choose Toolbox Items window appears with the .NET
Components tab selected.

3 Click Browse. Browse to the C:\Program
Files\Wonderware\Toolkits\ArchestrA Object\Bin
folder and select the ArchestraEditorFramework.dll file.
On a 64-bit operating system, browse to the C:\Program
Files (x86)\Wonderware\Toolkits\ArchestrA Object\Bin
folder to select the file.

4 Click Open. The ArchestrA controls are added to the list
of controls.

5 In the Name column, check those ArchestrA controls that
you want to see on your new tab. Click OK.

The ArchestrA controls now appear on your new tab in the
Visual Studio toolbox.
ArchestrA Object Toolkit Developer’s Guide

Configuring Associated Files 49
Changing the Attribute Reference of ArchestrA
Controls

You can change the attribute references of ArchestrA
controls after you have added them to your object editor. To
do this, set the control’s “Attribute” property to the external
name of the attribute. You can also do this programmatically
from config time code. This allows you, among other things,
to configure multiple primitive instances using the same
editor page.

For example, to set the attribute reference of the control
instance “aaTextBox1” to “Prim1.Attr1”, use this statement:
aaTextBox1.Attribute = "Prim1.Attr1";

Configuring Associated Files
If your project contains references to custom files or
libraries/assemblies, you must associate these “dependent
files” with the object definition. This ensures that they are
included when you build the object. The associated files
become part of the .aaPDF object package file. When you
later import the object on the target system, each associated
file is automatically registered on that system based on its
type.

If you know that the required files will already be present on
the target system, you can also tell the ArchestrA Object
Toolkit to specifically ignore these files. In that case, the files
are not included in the object package. This is handy for
references to standard Windows or ArchestrA assemblies.

There are two ways to configure associated files:

• For files that are set up as references in Visual Studio
(e. g. custom or third-party assemblies), you set up rules
using the Dependent File Manager. Rules are regular
expressions that can cover multiple references. All files
covered by a rule are then automatically added to the
object’s Associated Files list. You must set up rules for all
project references that you have set up in Visual Studio
before you can build your object.

• For files that are not set up as project references in Visual
Studio (e. g. custom data files), you set up the association
manually in the Object Designer’s Associated Files list.

The following sections explain both options.
ArchestrA Object Toolkit Developer’s Guide

50 Chapter 4 Defining an ApplicationObject
Setting up Rules for Dependent Files
To associate files with your object that are set up as project
references in Visual Studio (for example, custom or
third-party assemblies), you set up rules using the
Dependent File Manager. Rules are regular expressions that
can cover multiple references. All files that are linked to the
references covered by a rule are automatically added to the
object’s Associated Files list.

Note The file and folder names of associated files must not
contain any multi-byte characters.

You can configure a default set of rules for all projects, and
you can configure specific rules for a single project.

• When you open the Dependent File Manager while no
ArchestrA Object Toolkit project is opened, you can
configure only the default rules for all projects.

• When you open the Dependent File Manager while an
ArchestrA Object Toolkit project is opened, you can
configure both the default rules for all projects as well as
specific rules for the current project.

You can set up rules before or after you have added the
relevant references to your project in Visual Studio. In the
latter case, the references automatically appear in the
Dependent File Manager, and you can create rules for them
very easily without having to type the reference again. See
the following two sections for each method.

Rules are checked in the order that they appear in the
Dependent File Manager. After the ArchestrA Object Toolkit
finds a rule that matches a particular reference, it ignores
any subsequent rules that might also match that reference.

You can also configure additional search paths for dependent
files. See Configuring Additional Search Paths on page 113.

Note The System folder of the Dependent File Manager always
contains a set of default rules for references to core system
libraries. You can’t edit the rules in this folder.
ArchestrA Object Toolkit Developer’s Guide

Configuring Associated Files 51
Setting up Rules for References that Don’t Currently
Exist in Visual Studio
To set up rules for dependent files that you haven’t yet added
as references in Visual Studio, use the following procedure.

To set up rules for dependent files manually

1 Click the Dependent File Manager icon in the ArchestrA
Object Toolkit toolbar. The Dependent File Manager dialog
box appears.

2 Create a rule.
a In the Rules list, click either This Object or All Objects,

depending on where you want the rule to apply.
b Click the Add icon. A new rule appears in the list.
c In the Reference box on the right, enter the reference

expression to which this rule should apply. This can
be a .NET regular expression. For example, if you are
using references to “MyMathLib.Core.dll” and
“MyMathLib.Data.dll,” you can enter “MyMathLib*”
to cover both.

d Select the Ignore check box if the dependent file(s)
covered by this rule should be ignored. In that case,
the files are not added to the object package file
generated by the build process. Use this option if you
know that the files will already be present on the
target system.
ArchestrA Object Toolkit Developer’s Guide

52 Chapter 4 Defining an ApplicationObject
e In the Vendor box, enter the vendor name for the
file(s).

f In the Type list, select the file type. This determines if
and how files covered by this rule are registered on
the target system. The types work as follows:

g Leave the Browser check box unchanged. This feature
is reserved for future use.

h Select the Contains Embedded DEF check box if the file
contains the object’s aaDEF file as an embedded
resource. Typically, you don’t need to use this setting
because the aaDEF file is managed by the ArchestrA
Object Toolkit automatically.

Type Description

Dictionary An ArchestrA Dictionary
(.aaDCT) file.

NETFrameworkAssembly Strongly named .NET Framework
Assembly. The file is installed
into the Global Assembly Cache.

ComDLL COM in-proc server DLL. The file
is registered on the target system
using regsvr32.

Normal A normal file. Nothing is done on
the target system except install
the file.

ComEXE COM local server EXE. The file is
executed on the target system
with the "/RegServer" parameter.

NTService A file that runs as a Windows
service.

MergeRegistryScript A .reg file with registry
information. The file is imported
into the registry.

MsiMergeModule A bundled subcomponent of an
installer.

NETFrameworkAssemblyNIG .NET Framework Assembly. The
file is not installed into the Global
Assembly Cache.

Unknown Only applicable if you selected the
Ignore check box.
ArchestrA Object Toolkit Developer’s Guide

Configuring Associated Files 53
3 If the dependent files covered by the rule require
dependent files themselves, add each of those files to the
rule. For example, if you are using a COM DLL, the
reference in the project is actually to the auto-generated
interop assembly, but not the COM DLL itself. In that
case, you would add the actual COM DLL file as a
dependent file to the rule. Do the following for each file:
a In the Rules list, select the rule.
b Click the Add icon. A new file item appears in the list.
c In the Reference box on the right, enter the complete

path to the file, or click the browse button to select
the file.

d Configure the remaining options as described in the
previous step.

4 Click OK, or go back to step 2 to create more rules.

Setting up Rules for References that Currently Exist
in Visual Studio
To set up rules for dependent files that you have already
configured as references in Visual Studio, use the following
procedure.

To set up a rule for a reference already set up in Visual Studio

1 Click the Dependent File Manager icon in the ArchestrA
Object Toolkit toolbar. The Dependent File Manager dialog
box appears.

2 In the Dependent Files list, select the reference for which
you want to set up a rule. References not currently
covered by a rule are highlighted in black type.

3 Click either the All Objects or This Object button,
depending on where you want the rule to apply. A new
rule for this reference appears in the corresponding
section of the Rules list.

4 Configure the remaining options as described in the
previous procedure.
ArchestrA Object Toolkit Developer’s Guide

54 Chapter 4 Defining an ApplicationObject
Deleting and Re-Ordering Rules
You can edit the rules list by deleting rules or changing their
order.

To delete or re-order rules

1 Open the Dependent File Manager.
2 In the Rules list, select the desired rule.
3 Do one of the following:

• To delete the rule, click the Delete icon.
• To move the rule up or down in the list, click the

arrow icons.
4 Click OK.

Managing the Rules File for All Projects
The default dependent files rules for all projects are stored in
an XML file. You can specify which file to use. This allows
you to save and use different sets of default rules.

To manage the rules file for all projects

1 Open the Dependent File Manager.
2 In the All Objects Rules area, manage the rules file as

follows:
• To open a different rules file, click the browse button

next to the All Objects Rules File box.
• To save the current rules configuration under the file

name that is shown, click Save.
• To save the current rules configuration under a

different file name, click the down arrow on the Save
button and then select Save As.

• To set the currently shown file as the default file,
click Set Default.

• To use the file that is set as the default file, click
Default.
ArchestrA Object Toolkit Developer’s Guide

Configuring Associated Files 55
Configuring Associated Files Manually
To associate files with your object that are not set up as
project references in Visual Studio (e. g. custom data files),
you set up the association manually in the Object Designer’s
Associated Files list. Files listed here are included in the
object package file when you build the object, and optionally
registered on the target system when you import the object.

To manually add associated files

1 Open the Object Designer.
2 In the Shape pane, click the topmost node. The object

properties appear in the Configuration pane.
3 Click the downward arrow to the right of the Associated

Files heading. The section expands.

4 Click the Add icon. The Associated File dialog box appears.
5 In the Filename box, enter the complete path to the file, or

click the browse button to select the file.
6 In the Type list, select the file type. This determines if

and how files covered by this rule are registered on the
target system. The types work as follows:

Type Description

Dictionary An ArchestrA Dictionary
(.aaDCT) file.

NETFrameworkAssembly Strongly named .NET Framework
Assembly. The file is installed
into the Global Assembly Cache.

ComDLL COM in-proc server DLL. The file
is registered on the target system
using regsvr32.

Normal A normal file. Nothing is done on
the target system except install
the file.
ArchestrA Object Toolkit Developer’s Guide

56 Chapter 4 Defining an ApplicationObject
7 In the Vendor box, enter the vendor name for the file(s).
8 Select the Needed at Config time, Needed at Run time and

Needed by the Editor check boxes depending on which
components of your object use the file.

9 Leave the Needed by the Browser check box unchanged.
This feature is reserved for future use.

10 Select the Contains Embedded DEF check box if the file
contains the object’s aaDEF file as an embedded resource.
Typically, you don’t need to use this setting because the
aaDEF file is managed by the ArchestrA Object Toolkit
automatically.

11 Click OK.

To edit or delete an associated file

Note You can only edit or delete files that you manually added to
the Associated Files list. To edit or delete a file that was added
through a rule, use the Dependent File Manager.

1 Open the Associated Files list.
2 Select the file you want to edit or delete.
3 Do one of the following:

• To edit the file, click the Edit icon. The Associated File
dialog box appears. Edit the properties as described
in the previous procedure.

• To delete the file, click the Delete icon and confirm
the deletion.

ComEXE COM local server EXE. The file is
executed on the target system
with the "/RegServer" parameter.

NTService A file that runs as a Windows
service.

MergeRegistryScript A .reg file with registry
information. The file is imported
into the registry.

MsiMergeModule A bundled subcomponent of an
installer.

NETFrameworkAssemblyNIG .NET Framework Assembly. The
file is not installed into the Global
Assembly Cache.

Type Description
ArchestrA Object Toolkit Developer’s Guide

Configuring Additional Object Properties 57
Configuring Additional Object Properties
You can configure various additional properties for your
ApplicationObject:

• You can enable dump/load support for dynamic attributes
and virtual primitives as well as failover support for
dynamic attributes. See Configuring Dump/Load Support
for Dynamic Attributes and Virtual Primitives on page 58
and Configuring Failover Support for Run Time Dynamic
Attributes on page 59.

• You can enable “Advise Only Active” support for the
object to reduce processing and network load when its
attributes aren’t subscribed to. See Enabling “Advise
Only Active” Support for the Object on page 60.

• You can set a minimum Application Server version to
prevent users from importing your object into earlier
versions. See Configuring the Object’s Minimum
Application Server Version on page 60.

• You can set IDE Behavior options to control various
aspects of the object’s behavior in the ArchestrA IDE. See
Configuring the Object’s IDE Behavior on page 61.

• You can set the toolset that the object should be placed in
when it is imported into the ArchestrA IDE. See Setting
the Object’s Toolset on page 62.

• You can specify the execution order for the object’s
primitives. See Configuring the Object’s Primitive
Execution Order on page 63.

The following sections explain each of these additional
properties.
ArchestrA Object Toolkit Developer’s Guide

58 Chapter 4 Defining an ApplicationObject
Configuring Dump/Load Support for Dynamic
Attributes and Virtual Primitives

You can enable dump/load support for config time dynamic
attributes and virtual primitives in instances or derived
templates of your ApplicationObject. These attributes and
primitive instances are only added and configured at config
time, so their status and configuration may be different in
each object instance or derived template. Enabling
dump/load support allows you to preserve this configuration
when using the Galaxy Dump/Load and Export/Import
features on those instances or derived templates.

The dump/load support setting always applies to a specific
hierarchy level. For example, when you enable it on the top
hierarchy level of your ApplicationObject, it applies to
dynamic attributes and virtual primitive instances created
on that level. If your object uses child primitives, you must
configure the setting separately for each of those primitives.

Using the detailed AddAttribute and AddPrimitive methods,
you can exclude specific dynamic attributes or virtual
primitives from the dump/load support. For more
information, see the ArchestrA Object Toolkit Reference
Guide.

Important When you enable dump/load support, the ArchestrA
Object Toolkit automatically adds an attribute named
“InternalDumpLoadData1” to the object. Do not edit or remove
this attribute. Otherwise, the dump/load support doesn’t work.

To enable dump/load support

1 Open the Object Designer.
2 In the Shape pane, click the object name.
3 In the Configuration pane, select the Dump/Load support

for Dynamic Attributes & Virtual Primitives check box.
4 Click OK.
ArchestrA Object Toolkit Developer’s Guide

Configuring Additional Object Properties 59
Configuring Failover Support for Run Time
Dynamic Attributes

You can enable failover support for run time dynamic
attributes. This is relevant when using your
ApplicationObject in a redundant environment with dual
ApplicationEngines configured for failover. In such an
environment, when the primary AppEngine fails, all of its
hosted objects become available on the backup AppEngine.

When failover support is enabled, any dynamic attributes
created on your object during run time are preserved in case
of such a failover. Otherwise, run time dynamic attributes
are lost when the failover occurs and have to be recreated.

The failover support setting always applies to a specific
hierarchy level. For example, when you enable it on the top
hierarchy level of your ApplicationObject, it applies to
dynamic attributes created on that level. If your object uses
child primitives, you must configure the setting separately
for each of those primitives.

Using the detailed AddAttribute method, you can exclude
specific dynamic attributes from the failover support. For
more information, see the ArchestrA Object Toolkit Reference
Guide.

You can also use failover support to restore dynamic
attributes after a normal object startup, not just after a
failover. For additional information and guidelines, see
Ensuring Failover Support for Run Time Dynamic Attributes
on page 170.

Important When you enable failover support, the ArchestrA
Object Toolkit automatically adds an attribute named
“_InternalFailoverData1” to the object. Do not edit or remove
this attribute. Otherwise, the failover support doesn’t work.

To enable failover support

1 Open the Object Designer.
2 In the Shape pane, click the object name.
3 In the Configuration pane, select the Failover support for

Runtime Dynamic Attributes check box.
4 Click OK.
ArchestrA Object Toolkit Developer’s Guide

60 Chapter 4 Defining an ApplicationObject
Enabling “Advise Only Active” Support for the
Object

You can enable “Advise Only Active” support for your
ApplicationObject. When “Advise Only Active” support is
enabled, you can configure individual attributes to stop
updating if noone is subscribing to them. This reduces the
processing and network load.

After enabling “Advise Only Active” support for the object,
you still need to configure each individual attribute for
“Advise Only Active” support as required. For more
information, see Configuring “Advise Only Active” Support
for an Attribute on page 101.

To enable “Advise Only Active” support for the object

1 Open the Object Designer.
2 In the Shape pane, click the object name.
3 In the Configuration pane, select the Advise only Active

supported check box.
4 Click OK.

Configuring the Object’s Minimum Application
Server Version

You can configure a minimum Application Server version for
your ApplicationObject. This prevents users from importing
the object into earlier versions of Application Server.

Note This version check is only performed in Application Server
3.1 and higher.

To configure the minimum Application Server version

1 Open the Object Designer.
2 In the Shape pane, click the object name.
3 In the Configuration pane, enter the minimum version in

the Min IAS Version and Patch boxes.
4 Click OK.
ArchestrA Object Toolkit Developer’s Guide

Configuring Additional Object Properties 61
Configuring the Object’s IDE Behavior
You can customize the object’s behavior in the ArchestrA
IDE. For example, you can hide the object from certain views
and disable some commands.

To configure the object’s IDE behavior

1 Open the Object Designer.
2 In the Shape pane, click the object name.
3 In the Configuration pane, select the IDE Behavior check

box. A list of options appears.
4 In the General area, select the check boxes for the general

options you want to enable:
• Hide Tagname: Hides the object’s tagname in the

ArchestrA IDE views (Model, Deployment,
Derivation). This option is only applicable if the object
is contained. Otherwise, the tagname is shown even if
this option is enabled. When the object’s tagname is
hidden, users can only change its contained name in
the ArchestrA IDE.

• Hide Contained Name: Hides the object’s contained
name in the ArchestrA IDE views.

• Disable ObjectViewer Menu: Disables the View in
Object Viewer menu option in the ArchestrA IDE.

• Disable Template Derivation: Makes it impossible to
derive templates from the object.

• Disable Instance Creation: Makes it impossible to
derive instances from the object.

• Hide Standard Editor Tabs: Hides the standard tabs
(Object Information, Scripts, UDAs, etc.) in the custom
object editor. Only your custom tabs are shown.

5 In the Appearance area, select the check boxes for the
appearance options you want to enable:
• Hide in Browser: Hides the object in the Galaxy

Browser.
• Hide Template in Template Toolbox: Hides the object

template in the Template Toolbox.
• Hide Instance in Model View: Hides the object’s

instances in the Model view.
• Hide Instance in Deployment View: Hides the object’s

instances in the Deployment view.
• Hide in Security Editor Object List: Hides the object

from the security group configuration (Security Groups
tab in the Configure Security dialog box).

6 Click OK.
ArchestrA Object Toolkit Developer’s Guide

62 Chapter 4 Defining an ApplicationObject
Setting the Object’s Toolset
You can specify which toolset the object is placed in when you
import the object into the ArchestrA IDE.

Note You can configure the list of toolsets available for selection.
See Configuring Toolset Names.

To set the object’s toolset

1 Open the Object Designer.
2 In the Shape pane, click the object name. The object

properties appear in the Configuration pane.
3 In the Toolset list, click the toolset that the object should

be placed in after importing. Alternatively, type a custom
toolset name.

4 Click OK.

Configuring Toolset Names
You can configure the toolsets that you can select for your
objects in the Object Designer. Toolset names are saved in an
XML file and apply to all ArchestrA Object Toolkit projects
on your system. You can also save this file in a central
network location and share it across multiple systems.

To configure toolset names

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears.

2 In the left pane, click Toolset Names. The toolset list
appears in the right pane. Default toolsets appear with a
blue icon. You can’t edit these toolsets.

3 Configure the toolset names as follows:
• To add a toolset, click the Add icon and then click

Toolset. In the Name box, enter a name for the toolset.
The name must be ArchestrA compliant.

• To delete a toolset, select it, click the Delete icon, and
confirm the deletion.

• To save the toolset names file or to open a different
one, use the Save and browse buttons.

• To save the current rules configuration under a
different file name, click the down arrow on the Save
button and then select Save As.

• To set the currently shown file as the default file,
click Set Default.

• To use the default file, click Default.
4 Click OK.
ArchestrA Object Toolkit Developer’s Guide

Configuring Additional Object Properties 63
Configuring the Object’s Primitive Execution
Order

You can configure an execution order for the primitives in an
ApplicationObject by specifying one of ten execution groups
for each primitive. The execution group specifies the order in
which the primitive should be executed relative to other
primitives in the object. For example, if primitive B depends
on data calculated by primitive A, you would want to make
sure that primitive A is executed before primitive B so that
primitive B gets the latest data in each scan cycle of the
AppEngine. To do this, you would place primitive A in an
“earlier” execution group than primitive B.

Available execution groups are “Custom 1” to “Custom 10.”
Primitives in the “Custom 1” group are executed first, then
primitives in the “Custom 2” group, and so on.

Technically, all code that you implement at the
ApplicationObject level, such as the object’s own Startup or
Execute event handlers, is contained in a special primitive as
well. Therefore, you can also set an execution group at the
object level to specify when that code should be executed
relative to the code of other primitives in the object.

Note You can configure the execution group of a reusable
primitive when you develop the primitive, but you can’t change it
after you have embedded the primitive in an ApplicationObject.

To configure the object’s primitive execution order

1 Open the Object Designer.
2 In the Shape pane, click the object name or a primitive.

The object or primitive properties appear in the
Configuration pane.

3 Select the Advanced Configuration check box. The
Advanced Configuration section expands.

4 In the Execution Group list, select the execution group for
the primitive.

5 Click OK.
ArchestrA Object Toolkit Developer’s Guide

64 Chapter 4 Defining an ApplicationObject
Associating Different Assemblies with an
Object

An ApplicationObject consists of a number of different
assemblies. For example, there is one assembly for config
time code and another for run time code. These assemblies
are tied to the main ApplicationObject by means of their
CLSIDs.

By default, when you create a new ArchestrA Object Toolkit
project, the ArchestrA Object Toolkit automatically
generates a project folder with subfolders and code files for
each of these assemblies (see Creating a Project on page 32).
These are the files that you open and edit as you work with
the Object Designer and Object Design View.

Initially, the ArchestrA Object Toolkit automatically
configures the CLSIDs so that your object uses these new
default assemblies. However, you can change these
auto-configured CLSIDs to specify that your object should not
use these default assemblies, but different ones.

In most circumstances, if you’re creating an object completely
from scratch in the current version of the ArchestrA Object
Toolkit, you would not change the CLSID configuration, but
simply keep the default values. But, for example, there might
be situations where you would want to use an existing run
time assembly that you created by some other means, such as
a previous version of the ArchestrA Object Toolkit. By
specifying that assembly’s CLSID, you can tell your
ApplicationObject to use that assembly instead of the default
assembly that’s part of the ArchestrA Object Toolkit project.

If you change the CLSID configuration to use custom
assemblies, you must manually include these assemblies as
associated files so that they are installed and registered on
the target system. For more information, see Configuring
Associated Files on page 49.

Note Every time you increment your object’s major version, the
CLSID configuration for the object and all child primitives is
automatically reset to new, auto-generated values. Therefore, if
you are using custom CLSIDs, you must restore them after each
major version update.
ArchestrA Object Toolkit Developer’s Guide

Adding Object Help 65
To change an object’s CLSID configuration

1 Open the Object Designer.
2 In the Shape pane, click the object name. The object

properties appear in the Configuration pane.
3 Select the Advanced Configuration check box. The

Advanced Configuration section expands.
4 Enter the assembly CLSIDs as follows:

a Primitive GUID: GUID of the main object assembly.
Usually you won’t have to change this GUID.

b Package CLSID: CLSID of the assembly that contains
the config time code

c Runtime CLSID: CLSID of the assembly that contains
the run time code

d BRO CLSID: Reserved for future use. Do not change
this setting.

5 Click OK.

Adding Object Help
The ArchestrA Object Toolkit does not provide a means to
add object help to your object. However, you can use the
standard means of the ArchestrA IDE to do this, and then
export the object including the object help as an .aaPKG file.

Your object help file must be a standard HTML file.

To add object help

1 Develop and test your object as usual.
2 Open the ArchestrA IDE and import your object’s .aaPDF

file. The object template is now shown in the Template
Toolbox.
ArchestrA Object Toolkit Developer’s Guide

66 Chapter 4 Defining an ApplicationObject
3 Right-click the object template and select Object Help.
The help window appears with a message that no object
help file could be found.

4 Save your object help file under the name shown in the
error message. For example, if the message says that no
help file was found at “C:\Program
Files\ArchestrA\Framework\FileRepository\MyGalaxy
\Objects\551\Help\1033\help.htm,” save the help file
in that folder and under that name.

5 Close the help window. Repeat step 3 to verify that your
help file now appears.

6 Export your object as an .aaPKG file.
The exported .aaPKG file now contains your original object
as well as the help file that you manually copied into the help
folder. When you import the .aaPKG file into a different
galaxy, the help file is automatically imported and saved at
the correct location.
ArchestrA Object Toolkit Developer’s Guide

Importing an .aaDEF File from a Previous Object Version 67
Importing an .aaDEF File from a Previous
Object Version

If you have an existing ApplicationObject developed with a
previous version of the ArchestrA Object Toolkit, you can
easily re-create its shape by importing the object’s .aaDEF
file. This saves time because you can reuse the existing object
shape.

To use this feature, you must use a newly created ArchestrA
Object Toolkit project for which you haven’t defined any
attributes or primitives yet. Otherwise, the .aaDEF import is
disabled.

To import an existing .aaDEF file

1 Open the Object Designer.
2 Click the Import aaDEF button in the bottom. The Browse

for AADef Files dialog box appears.
3 Select the .aaDEF file you want to import and click Open.
The ArchestrA Object Toolkit imports the .aaDEF file. When
the import is finished, the Object Designer shows the object
shape as defined in the .aaDEF file.
ArchestrA Object Toolkit Developer’s Guide

68 Chapter 4 Defining an ApplicationObject
ArchestrA Object Toolkit Developer’s Guide

69
Chapter 5

Defining a Reusable Primitive

A reusable primitive is a primitive that is intended to be
included into multiple objects. This allows you to share
component-level code across objects. The Input and Output
primitives that you can add in the Object Designer are good
examples of how reusable primitives are beneficial.

Using the ArchestrA Object Toolkit, you can create your own
custom reusable primitives and use them in your objects. For
more information on how to add a reusable primitive to an
object, see Adding a Reusable Primitive on page 41.

From a development perspective, creating a reusable
primitive is very similar to creating an object. Therefore, this
section describes only the procedures that are specific to
developing a primitive.

Note Reusable primitives must be added to an object before you
can import them into a Galaxy. You can’t import a reusable
primitive alone.

Switching between Object/Primitive Mode
When working on an ArchestrA Object Toolkit project, you
can switch between ApplicationObject and reusable primitive
mode at any time. For example, when you start working on
an ApplicationObject but decide that you want to implement
its functionality as a reusable primitive instead, you can
switch to primitive mode. If you later change your mind and
decide that you do want to implement it as an object after all,
you can simply switch back to object mode.
ArchestrA Object Toolkit Developer’s Guide

70 Chapter 5 Defining a Reusable Primitive
Any properties and features that are not relevant to the
current mode are blocked from access in the Object Designer
and Object Design View. However, they are still preserved in
the project code, so when you switch back to the other mode,
they are available again.

To switch between object and primitive mode

1 Open the Object Designer.
2 In the Shape pane, click the topmost node. The object

properties appear in the Configuration pane.
3 In the Category list, select either Application Object or

Reusable Primitive, depending on which mode you want.
4 Click OK.

Differences Between Editing Objects and
Primitives

When developing a reusable primitive, there are certain
differences as compared to developing an ApplicationObject:

• The Object Designer doesn’t have any fields for editing
the minor version, toolset name or description. These
settings are irrelevant for a reusable primitive.

• The Configuration Event Handlers and IDE Behavior
sections are removed from the Object Designer. Both are
irrelevant for a reusable primitive. (The standard config
time event handlers are still available via the Object
Design View.)

• A reusable primitive does not have its own setting for
“Advise Only Active” support. “Advise Only Active”
support is determined by the ApplicationObject that the
primitive is used in.

• Reusable primitives don’t have their own custom editor.
Any required configuration UI must be implemented in
the editor of the object that contains it.

• The Build & Import, Build & Instantiate and Build & Deploy
build modes are not available. They are not applicable to
a reusable primitive.

• The Increment Minor Version versioning option is not
applicable to reusable primitives.

• The output file created by the build process is an .aaPRI
file, not an .aaPDF file. You must add the reusable
primitive to an object before you can import it into a
Galaxy. You can’t import a reusable primitive alone.
ArchestrA Object Toolkit Developer’s Guide

71
Chapter 6

Configuring Attributes

Attributes are the data items of an object or primitive. By
reading from and writing to attributes, objects can exchange
data with each other.

You can configure attributes for an ApplicationObject or
reusable primitive by using the ArchestrA Object Toolkit’s
Object Designer. You can:

• Add, edit and delete attributes and array attributes. See
Adding Attributes to an Object or Primitive on page 72
and Renaming or Deleting Attributes on page 104.

• Configure set handlers for attributes. See Configuring
Config Time Set Handlers on page 74 and Configuring
Run Time Set Handlers on page 76.

• Make attributes historizable and alarmable. See
Configuring Attribute Extensions on page 79.

• Add inputs and outputs to read and write data to and
from the field. See Adding Inputs and Outputs on
page 89.

• Configure “Advise Only Active” support for attributes.
See Configuring “Advise Only Active” Support for an
Attribute on page 101.

You can also configure attributes directly in the code. For
more information, see the ArchestrA Object Toolkit Reference
Guide.
ArchestrA Object Toolkit Developer’s Guide

72 Chapter 6 Configuring Attributes
Attributes that you configure using the ArchestrA Object
Toolkit are different from the User-Defined Attributes
(UDAs) that you can configure in the ArchestrA IDE. You can
only view or edit their configuration in the ArchestrA IDE
using your custom object editor, but not the standard UDAs
page.

Also, the ArchestrA attributes that we talk about here are
not the same as C# attributes. Unless specifically noted,
when this manual talks about “attributes,” we mean
ArchestrA attributes, not C# attributes.

Adding Attributes to an Object or Primitive
The easiest way to add attributes and array attributes to an
ApplicationObject or reusable primitive is by using the
Object Designer.

To add an attribute

1 Open the Object Designer.
2 In the Shape pane, select the location where you want to

add the attribute. For example, if you want to add an
attribute to a local primitive, select that primitive or one
of its attributes.

3 In the Shape pane, click the down arrow next to the Add
icon.

4 Click Attribute. The properties of the new attribute are
shown in the Configuration pane.

5 In the External Name box, enter a unique external name
for the attribute. This is the name by which other objects
can access the attribute. The name must be ArchestrA
compliant. See Naming Conventions on page 157 for
applicable restrictions.
If you change this name later, you must manually update
any references where the attribute name is passed as a
string, e. g. in the custom object editor.

6 In the Internal Name box, enter a unique internal name
for the attribute. This is the name by which you can refer
to the attribute in the object’s code. The name must be C#
compliant. The maximum length is 329 characters.
If you change this name later, you must manually update
any references where the attribute name is passed as a
string.
ArchestrA Object Toolkit Developer’s Guide

Adding Attributes to an Object or Primitive 73
7 In the Type list, select a data type for the attribute. For
available options, see Appendix D, ArchestrA Data
Types. If the data type isn’t known in advance, select
Variant. You can then set the data type as required using
custom config time or run time code.

8 In the Category list, select a category for the attribute.
The category determines who can write to the attribute
and whether it is lockable in the template. It also
determines whether the additional attribute options in
the following steps are available or not. For more
information, see Appendix E, ArchestrA Attribute
Categories.

9 If you want to create custom config time and/or run time
set handlers for the attribute, select the Configuration Set
Handler and/or Runtime Set Handler check boxes.

10 Select the Supports Calculated Quality and Calculated Time
check box if the object should be able to set the attribute’s
quality and timestamp. This may be necessary if you use
field data (with potentially Bad or Uncertain quality) to
calculate the attribute’s value. If you clear this check box,
the attribute’s quality is always Good, and the timestamp
is always the object’s startup time.

11 Select the Frequently Accessed check box to mark the
attribute as a “frequently accessed” attribute for the
Galaxy Browser. (Users can enable a filter to only display
these attributes in the Galaxy Browser.)

12 Select the Advise only Active check box if you want to
implement “Advise Only Active” support for the attribute.
For more information, see Configuring “Advise Only
Active” Support for an Attribute on page 101.

13 In the Value box, enter the attribute’s default value.
14 Click the shield icon next to the Value box and select the

attribute’s security classification. For available options,
see Appendix F, ArchestrA Security Classifications.

15 To make the attribute an array:
a Select the Array check box. The array properties

appear.
b In the Array Length box, enter the size of the array.
c In the grid, enter default values for each array

element.
16 Click OK to save the attribute, or go back to step 2 and

add more attributes.
ArchestrA Object Toolkit Developer’s Guide

74 Chapter 6 Configuring Attributes
Creating a Default Attribute
If you create an attribute with an external name of “PV,” this
attribute is considered the object’s “default” attribute. This
attribute is used when a reference only specifies the object
name without any attribute name. For example, a script can
refer to “Tank2Volume.PV” simply as “Tank2Volume”. The
attribute “PV” is implied.

Creating a “Hidden” Attribute
You can “hide” an attribute so that it doesn’t appear in the
Galaxy Browser or Object Viewer by default. Other objects
can still access the hidden attribute, but regular users won’t
see it unless they explicitly choose to display hidden
attributes.

Some good reasons to create hidden attributes are:

• To preserve private configuration data in the
configuration database

• To preserve private run time data in the checkpoint file

• To allow private data to be transferred from the config
time component to the run time component when the
object is deployed

To create a hidden attribute

When defining the attribute in the Object Designer,
prefix its external name with an underscore. For
example, _MyHiddenAttribute.

Configuring Config Time Set Handlers
You can configure a config time set handler for any attribute
that can be written to at config time. The code in this set
handler is executed every time a value is written to the
attribute during configuration. The set handler can then
accept the value and write it to the attribute, or reject it. For
an example, see Example: Configuring a Config Time Set
Handler.

A set handler can also perform other actions, like modifying
the values of other attributes or clamping a value.

When rejecting a value, a config time set handler should not
generate an alarm, event, or Logger message. Instead, return
a localized message to the client. See the example in the
section below.
ArchestrA Object Toolkit Developer’s Guide

Configuring Config Time Set Handlers 75
To configure a config time set handler for an attribute

1 Make sure the Configuration Set Handler check box is
selected in the attribute’s configuration. For more
information, see Adding Attributes to an Object or
Primitive on page 72.

2 In the Object Design View, expand the Attributes folder.
3 Expand the attribute name.
4 Double-click Configtime Set Handler. The code section for

the config time set handler appears in the Visual Studio
code editor.

5 Enter the code for the config time set handler. When you
are done, save your changes.

Example: Configuring a Config Time Set Handler
Assume you want to return a custom, localized error message
to the configuration client if the requested value for an
attribute “Attr1” is out of range. First, you set up the error
message in the object dictionary. Let’s say you give it an ID of
10001 (IDs up to 10000 are reserved for standard messages).
Then you code the config time set handler for Attr1 to look
something like this:
if (<conditions for valid value>)

{
Attr1 = e.value; // set the new value

}

else

{
// Reject the value and set the error message if the
value is out of range
e.Message = GetText(10001); // ID of your error
message

}

Now, when an invalid message is written to the attribute at
config time, the localized message corresponding to the ID
10001 is shown.
ArchestrA Object Toolkit Developer’s Guide

76 Chapter 6 Configuring Attributes
Configuring Run Time Set Handlers
You can configure a run time set handler for any attribute
that can be written to at run time. The code in this set
handler is executed whenever anyone other than the
primitive logic associated with that attribute attempts to
write to it. The set handler can then accept the value and
write it to the attribute, or reject it.

A set handler can also perform other actions, e. g. modify the
values of other attributes or clamp a value.

When the set handler is called at run time, it is passed not
only the new value, but also information about the client
making the call (whether the client is a user, another object,
or another primitive within the same object). The set handler
can take this information into account when deciding
whether to accept the new value.

When rejecting a value, run time set handlers should not
generate an alarm, event, or Logger message. Instead, return
an appropriate error code to the client. See the example in
the section below. The MxStatusDetail enumeration provides
a number of standard error codes that you should use if they
fit your object’s error situations.

To configure a run time set handler for an attribute

1 Make sure the Runtime Set Handler check box is selected
in the attribute’s configuration. For more information,
see Adding Attributes to an Object or Primitive on
page 72.

2 In the Object Design View, expand the Attributes folder.
3 Expand the attribute name.
4 Double-click Runtime Set Handler. The code section for the

run time set handler appears in the Visual Studio code
editor.

5 Enter the code for the run time set handler. When you
are done, save your changes.
ArchestrA Object Toolkit Developer’s Guide

Configuring Run Time Set Handlers 77
Example: Configuring a Run Time Set Handler
Assume you want to return a custom, localized error message
to the client if the requested value for an attribute “Attr1” is
out of range. First, you set up the error message in the object
dictionary. Let’s say you give it an ID of 10001 (IDs up to
10000 are reserved for standard messages). Then you code
the run time set handler for Attr1 to look something like this:
if (<conditions for valid value>)

{
Attr1 = e.value; // set the new value

}

else

{
// Reject the value and set the error status if the
value is out of range
e.status.detail = 10001; // ID of your error message
e.status.Category =
MxStatusCategory.MxCategoryOperationalError;
e.status.detectedBy =
MxStatusSource.MxSourceRespondingAutomationObject;

}

When the client receives the error, the GetStatusDesc run
time event handler is triggered. By default it returns the
localized message corresponding to the ID that you put into
e.status.detail, which is automatically passed to
GetStatusDesc as e.DetailedErrorCode:
switch (e.detailedErrorCode)

{
default:

e.status = GetText((int)e.detailedErrorCode);
break;

}

ArchestrA Object Toolkit Developer’s Guide

78 Chapter 6 Configuring Attributes
Configuring Dynamic Attribute Set Handlers
The ArchestrA Object Toolkit allows you to dynamically
create attributes at config time or run time. For more
information, see the documentation on the AddAttribute and
DeleteAttribute methods in the ArchestrA Object Toolkit
Reference Guide. As with regular attributes, you can create
set handler code for these “dynamic” attributes. The
ArchestrA Object Toolkit provides a special code section for
this.

Technically, there is only one set handler for all dynamic
attributes. However, when this set handler is called, the
name of the attribute that it’s called for is passed as an
argument. By checking this name, you can branch your code
and use different set handler code for different dynamic
attributes.

To edit the dynamic attribute set handler code

1 In the Object Design View, expand the Configtime or
Runtime folder, depending on which set handler you want
to edit.

2 Double-click Dynamic Attributes Set Handler. The set
handler region for dynamic attributes appears in the code
editor.

3 Enter any required code, and then save your changes.

Example: Configuring a Set Handler for a Dynamic
Attribute
Assume your object has three dynamic attributes at config
time: DynAtt1, DynAtt2, and DynAtt3. You want to assure
that DynAtt1 is only set to positive values, whereas any
values are valid for the other two attributes. You would
configure a set handler like the following:

string attrName = Get(e.attributeHandle.shAttributeId,
e.attributeHandle.shPrimitiveId, EATTRIBUTEPROPERTY.idxAttribPropName); //
Get name of attribute for which set was made

if (attrName == "DynAtt1") // In this case, reject negative values

{
if (e.Value < 0)
{

e.Message = string.Format("Value for {0} must be positive", attrName);
}
else
{

SetValue(attrName, e.Value);
}
return;

}
SetValue(attrName, e.Value); // In all other cases, just set the value
ArchestrA Object Toolkit Developer’s Guide

Configuring Attribute Extensions 79
Configuring Attribute Extensions
You can “extend” an attribute’s functionality in the following
ways:

• Historizing the attribute

• Making the attribute alarmable

The following sections explain how to configure these
extensions in the Object Designer.

Technically, the extension features are implemented as
primitives. The following sections also include reference
information on these primitives’ attributes.

Historizing an Attribute
You can enable history for attributes of the following data
types: Float, Double, Integer, Boolean, String, CustomEnum,
and ElapsedTime. When you do this, the attribute’s run time
values are historized according to the settings of the engine
that the object is deployed to. (If historization is disabled for
the engine, no attribute values are historized even if history
is enabled for the attribute.)

Note Some attribute categories don’t support historization. For
example, attributes that exist only at config time can’t be
historized.

As a guideline, enable history only for those attributes that
most of your users would want to historize. If your users
want to historize additional attributes, they can always do so
by setting up attribute extensions in the ArchestrA IDE.

Technically, when you enable history for an attribute, a
history primitive is added to the object. You can make this
primitive virtual so that your users can choose whether or
not they actually need the history functionality. For
information on the primitive’s attributes, see Attributes of
the History Primitive on page 81.

To enable history for an attribute

1 Open the Object Designer.
2 In the Shape pane, click the attribute name.
3 In the Configuration pane, select the Historizable check

box. The historization options appear. Depending on the
attribute’s data type, some options may be disabled.
ArchestrA Object Toolkit Developer’s Guide

80 Chapter 6 Configuring Attributes
4 Configure the history options for the attribute:
a In the Engineering Units list, select the attribute that

contains the engineering units string for the
attribute. (The list shows all string attributes defined
in your object.)

b In the Value Deadband box, enter the value deadband
(in engineering units) for historization. If the
attribute value changes, the new value is only
historized if it exceeds this deadband.

c In the Trend Scale Max and Trend Scale Min boxes,
enter the default maximum and minimum scale
values for showing the attribute’s data in a trend.

d In the Forced Storage Period box, enter a time interval
in milliseconds. The attribute value is always
historized at this interval, regardless of whether it
has changed. A value of 0 disables this setting, that
is, attribute values are only historized if and when
they change.

e In the Interpolation Type list, select the interpolation
type to be used.

f In the Rate Deadband box, enter a deadband rate for
swinging door storage (if applicable).

g In the Roll Over Value box, enter the rollover value
(only applicable if Counter retrieval will be used for
this attribute’s data).

h In the Sample Count box, enter the number of samples
to be stored in the Active Image buffer of the
Historian.

i In the Description box, enter a description to be stored
for the attribute on the Historian. This can also be a
reference to an attribute that contains the
description.

j Select the Enable Swinging Door check box to enable
swinging door storage.

5 Select the Virtual check box to make the history primitive
virtual.
This automatically enables the Add Attribute to
enable/disable History check box as well. When this check
box is enabled, an additional attribute named
“<AttributeName>.Historized” is added with config time
set handler code to enable and disable the history
primitive. You can simply add this attribute to the
custom object editor to allow your users to enable or
disable history for the attribute. If you don’t want this
attribute, clear the check box.
ArchestrA Object Toolkit Developer’s Guide

Configuring Attribute Extensions 81
6 To lock or unlock any history option, click the padlock
icon next to its input box. Locked options can’t be
changed at run time.

7 Click OK, or go back to step 2 and configure history for
additional attributes.

Attributes of the History Primitive
You can use the following attributes of the History primitive
to monitor or re-configure it at config time and run time.

Name Type Category Description

EngUnitsAttrName String PackageOnly
Lockable

Name of the attribute
that defines the
engineering units string
for the value being
historized. Only applies to
numerical attributes.

_InterPolationTypeEnum String[3] Constant Possible interpolation
types: "Stairstep",
"Linear", "SystemDefault"

ValueAttrName String PackageOnly
Lockable

Name of the attribute
whose values should be
historized.

Description String Writeable_US
C_Lockable

A brief description for the
historized attribute. May
be a literal string or a
reference to another
string attribute
containing the
description. The content is
only considered to be a
reference if the reference
is of the form
"me.AttrName". By
default, the object’s
“ShortDesc” attribute is
used. (Value can’t be set
at run time.)

EnableSwingingDoor Boolean Writeable_US
C_Lockable

Enable or disable
swinging door storage.
(Value can’t be set at run
time.)
ArchestrA Object Toolkit Developer’s Guide

82 Chapter 6 Configuring Attributes
ForceStoragePeriod Integer Writeable_US
C_Lockable

The time interval, in
milliseconds, at which the
value is always stored,
regardless of the value
deadband setting.
Effectively, this allows a
continuous storage
interval to be
superimposed upon the
value deadband
mechanism. A value less
than or equal to 0 disables
this feature. As an
example, a setting of
360000 indicates the
value must be stored once
per hour (measured from
the time the object was
last put OnScan). A value
less than the host engine’s
scan period causes the
forced storage to occur
every scan cycle.

InterpolationType Custom
Enum

Writeable_US
C_Lockable

Interpolation type
(Stairstep, Linear,
SystemDefault, or None).
(Value can’t be set at run
time.)

RateDeadBand Float Writeable_US
C_Lockable

Deadband rate for
swinging door storage.
(Value can’t be set at run
time.)

RolloverValue Float Writeable_US
C_Lockable

Rollover value for Counter
retrieval. (Value can’t be
set at run time.)

SampleCount Integer Writeable_US
C_Lockable

Number of samples to be
stored in Active Image.
(Value can’t be set at run
time.)

TrendHi Float Writeable_US
C_Lockable

The default top of the
trend scale for clients.
Must be greater than or
equal to TrendLo.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

Configuring Attribute Extensions 83
Making an Attribute Alarmable
To configure alarms for an attribute, you create an additional
Boolean attribute for each alarm type that you want to
enable. Then, you enable the alarm extension and configure
alarm options for each of these Boolean attributes. Finally,
you create custom code that checks for the alarm conditions
and changes the value of the these Boolean attributes
accordingly to raise or clear the respective alarms. An alarm
is active when the alarmed Boolean attribute is True, and
inactive when it is False.

For an example, see Example: Configuring a Value Alarm for
an Attribute on page 86.

Caution Simply making an attribute alarmable does not ensure
that the alarm condition is actually monitored at run time! You
must create custom run time code that checks for the alarm
condition and raises or clears the alarm as required. The alarm
extension only reports the alarm to the alarm system, but it does
not detect it on its own.

TrendLo Float Writeable_US
C_Lockable

The default bottom of the
trend scale for clients.
Must be less than or equal
to TrendHi.

ValueDeadBand Float Writeable_US
C_Lockable

The amount, in
engineering units, by
which the value of the
historized attribute must
change in order for the
new value to be
historized. A value of 0
means that all new values
are historized. Also, when
the attribute’s quality
changes, the value is
always historized
regardless of this setting.
Only expose this attribute
in the configuration
environment for
numerical datatypes such
as Float, Double, or
Integer.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

84 Chapter 6 Configuring Attributes
As a guideline, configure only those alarms that most of your
users would want to enable. If your users want to configure
additional alarms, they can always do so by setting up
attribute extensions in the ArchestrA IDE.

Technically, when you make an attribute alarmable, an
alarm primitive is added to the object. You can make this
primitive virtual so that your users can choose whether or
not they actually need the alarm functionality. For
information on the primitive’s attributes, see Attributes of
the Alarm Primitive on page 87.

We recommend that you lock any alarm settings that you
don’t expect your users to change (such as the alarm
category).

To make an attribute alarmable

1 Open the Object Designer.
2 In the Shape pane, click the Boolean attribute name.
3 In the Configuration pane, select the Alarmable check box.
4 In the Category list, select the category to be shown for

the alarm. Use the main categories as follows:

Category Purpose

Value Limit alarms (LoLo, Lo, Hi, HiHi)

Deviation Deviation from a setpoint (major, minor)

ROC Rate-of-change alarms (value changes
slower or faster than expected)

Batch Alarms or events associated with a
batch process

Discrete Discrete alarms

Process Alarms or events associated with the
physical process/plant

SPC SPC alarms (out-of-spec, out-of-control,
“run rules;” etc.)

System Alarms or events associated with the
automation system

Software Alarms or events associated with a
software operation/logic (such as “divide
by zero” in a script)
ArchestrA Object Toolkit Developer’s Guide

Configuring Attribute Extensions 85
5 In the Priority box, enter a priority for the alarm (0 =
highest, 999 = lowest).

6 Optionally, in the Engineering Units list, select the
attribute that contains the engineering units string for
the attribute. (The list shows all string attributes defined
in your object.)

7 Optionally, in the Value list, select the attribute whose
value the alarm relates to.

8 Optionally, in the Limit list, select the attribute that
contains the alarm limit value.

9 Optionally, in the Description list, select the attribute
whose value should be used as the alarm description.

10 Select the Virtual check box to make the alarm primitive
virtual.
This automatically enables the Add Attribute to
enable/disable Alarm check box as well. When this check
box is enabled, an additional attribute named
“<AttributeName>.Alarmed” is added with config time
set handler code to enable and disable the alarm
primitive. You can simply add this attribute to the
custom object editor to allow your users to enable or
disable the alarm. If you don’t want this attribute, clear
the check box.

11 To lock or unlock any alarm option, click the padlock icon
next to its input box. Locked options can’t be changed at
run time.

12 Click OK, or go back to step 2 and configure alarms for
additional attributes.
ArchestrA Object Toolkit Developer’s Guide

86 Chapter 6 Configuring Attributes
Example: Configuring a Value Alarm for an Attribute
Assume you want to set up a HiHi value alarm for an Integer
attribute named “AlmAtt1.” To do this, you would follow
these general steps:

1 Create attributes to manage the alarm. You need at least
the Boolean attribute that represents the alarm
condition. In this example, we will also set up attributes
for the limit value and description of the alarm. It’s
convenient to group these attributes in a separate
primitive. So, add a new local primitive with an empty
external name and the following attributes:

2 Make AlmAtt1.HiHi alarmable (see Making an Attribute
Alarmable on page 83). Set the category to “ValueHiHi”
and specify a priority. Set the Value attribute to
“AlmAtt1,” the Limit attribute to “AlmAtt1.HiHi.Limit,”
and the Description attribute to
“AlmAtt1.HiHi.AlmDesc.”

3 Add code to the Execute run time event handler of the
local primitive you added. The code should:
• Check the value of AlmAtt1 to see if it exceeds the

value of AlmAtt1.HiHi.Limit.
• If yes, and AlmAtt1.HiHi is False (i. e. the actual

alarm condition has just occurred), set AlmAtt1.HiHi
to True. If AlmAtt1.HiHi is already True, there is no
need to set it again.

• If no, and AlmAtt1.HiHi is True (i. e. the value has
just returned to normal), set AlmAtt1.HiHi to False.
If AlmAtt1.HiHi is already False, there is no need to
set it again.

Now, when the value of AlmAtt1 exceeds its limit at run
time, the primitive code detects this and sets AlmAtt1.HiHi
to True. Because you made AlmAtt1.HiHi alarmable, its
alarm primitive detects this change in value and reports an
alarm using the information that you configured (Category =
HiHi, value = current value of AlmAtt1, etc.)

Name Data type Description

AlmAtt1.HiHi Boolean Indicates if the alarm
condition is met

AlmAtt1.HiHi.
Limit

Integer HiHi limit value

AlmAtt1.HiHi.
AlmDesc

String Alarm
description/comment
ArchestrA Object Toolkit Developer’s Guide

Configuring Attribute Extensions 87
Attributes of the Alarm Primitive
You can use the following attributes of the Alarm primitive to
monitor or re-configure it at config time and run time.

Name Type Category Description

AlmEngUnitsAttrName String PackageOnly
Lockable

Name of the attribute
containing the Engineering
Units string.

AlmValueAttrName String PackageOnly
Lockable

Name of the attribute
whose value is monitored
for the alarm condition.

_CategoryEnum String
[14]

Constant Possible values for the
Category attribute:
Discrete, Value LoLo,
Value Lo, Value Hi, Value
HiHi, DeviationMinor,
DeviationMajor, ROC Lo,
ROC Hi, SPC, Process,
System, Batch, Software

ConditionAttrName String PackageOnly
Lockable

Name of the Boolean
attribute that represents
the alarm condition.

LimitAttrName String PackageOnly
Lockable

Name of the attribute that
contains the limit value for
the alarm condition.

Acked Boolean Calculated Indicates whether the
alarm is acknowledged.
This attribute is updated
when a user sets the
AckMsg attribute. It is
always set to false when a
new alarm condition is
detected (i. e. when the
InAlarm attribute changes
from false to true).

AckMsg String Writeable_US Operator acknowledgement
comment.
Run time set handler:
Stores received text and
sets the Acked attribute to
true. Also sets the
TimeAlarmAcked attribute
to the current time.
ArchestrA Object Toolkit Developer’s Guide

88 Chapter 6 Configuring Attributes
AlarmInhibit Boolean Writeable_US When true, the alarm is
disabled. This attribute is
intended to be written to
typically by a script or user
or input extension. Only
the individual alarm is
disabled. No other alarms
are disabled in the same
object or in any assigned or
contained objects.

AlarmMode Custom
Enum

Calculated
Retentive

Current alarm mode (based
on the commanded mode).

AlarmModeCmd Custom
Enum

Writeable_US Currently commanded
alarm mode.

Category Custom
Enum

Writeable_US
C_Lockable

Category of the alarm. The
label of each alarm category
is fixed. See the
_CategoryEnum attribute
for possible values.
Run time set handler:
Ensures that the value is
between 1 and 15.

DescAttrName String Writeable_US
C_Lockable

Description for the alarm
condition. May be a literal
string or a reference to
another string attribute
containing the description.
The content is only
considered to be a reference
if the reference is of the
form "me.AttrName". By
default, the object’s
“ShortDesc” attribute is
used.

InAlarm Boolean Calculated This bit represents the
alarm state. This is exactly
the same as the attribute in
the host primitive that
represents the alarm
condition except when the
alarm state is disabled. In
that case, InAlarm is set to
false regardless of the
actual condition state.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

Adding Inputs and Outputs 89
Adding Inputs and Outputs
By adding inputs and outputs to your objects or primitives,
you can read and write data to and from other ArchestrA
objects. For example, your object could have an input that
reads data from an attribute of a DIObject, which in turn
reads data from an item in a physical PLC.

Technically, inputs and outputs are implemented not as
single attributes, but as primitives that expose multiple
attributes. However, you can add and configure them much
like attributes in the Object Designer. There are three types
of input/output primitives:

• Input: Reads values from an external reference.

• Output: Writes values to an external reference.

• Input/Output: Reads and writes values to and from an
external reference. Optionally, the input reference can be
different from the output reference, i. e. values can be
written to a different address than the one they are read
from.

An instance of the relevant primitive is added for every input
or output that you configure. To read and write the I/O data
at run time, you simply use the attributes of each primitive
instance.

Priority Integer Writeable_US
C_Lockable

Priority of the alarm. Valid
values are 0 to 999. 0 is the
highest priority.

TimeAlarmAcked Time Calculated Time stamp indicating the
last time the alarm was
acknowledged.

TimeAlarmOff Time Calculated Time stamp indicating the
last time the alarm went
off.

TimeAlarmOn Time Calculated Time stamp indicating the
last time the alarm went
on.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

90 Chapter 6 Configuring Attributes
Adding an Input
Using an input, you can read single data values from an
external input source. Often, that source will be a
DeviceIntegration object attribute that represents a register
or piece of data in a field device, but you can configure any
attribute of any AutomationObject as the input source. The
actual reference is usually configured by the end user.

If you know the expected data type, specify it and lock it in
the Object Designer after you add the input. Give the input a
useful external name that indicates its purpose to the end
user.

When you add a static (non-virtual) input primitive, wrapper
classes are added automatically. Use these wrappers to
access the input values, quality, and status at run time. For
example:
if (Input1.Value.Quality ==

DataQuality.DataQualityGood)

{
double myValue = Input1.Value;

}

For virtual input primitives, you can use the primitive’s
attributes instead. For more information, see Attributes of
the Input Primitive on page 91.

For more information on input primitive wrappers and using
the InputPrimitive wrapper to create instances of a virtual
input primitive, see the ArchestrA Object Toolkit Reference
Guide.

To add an input

1 Open the Object Designer.
2 In the Shape pane, select the location where you want to

add the input. For example, if you want to add an input to
a local primitive, select that primitive or one of its
attributes.

3 In the Shape pane, click the down arrow next to the Add
icon.

4 Click Input. A primitive node for the input is added to the
object tree in the Shape pane. The properties of the new
input are shown in the Configuration pane of the Object
Designer.

5 In the External Name box, enter a unique external name
for the input. This is the name by which other objects can
access the input. The name must be ArchestrA compliant.
ArchestrA Object Toolkit Developer’s Guide

Adding Inputs and Outputs 91
6 In the Internal Name box, enter a unique internal name
for the input. This is the name by which you can refer to
the input in the object’s code. The name must be C#
compliant.

7 Select the Virtual check box.if the new input primitive
should be virtual.

8 In the Shape pane, click the DataType item underneath
the new primitive node. The Configuration pane now
shows the data type properties.

9 In the Value list, select the data type for the input.
10 In the Shape pane, click the InputSource item underneath

the new primitive node. The Configuration pane now
shows the input source properties.

11 In the Value box, enter the input source reference.
12 Click OK, or go back to step 2 to add more inputs.

Attributes of the Input Primitive
You can use the following attributes of the Input primitive to
monitor or re-configure it at config time and run time.

Name Type Category Description

DataType Data Type Writeable_C
_Lockable

Specifies the expected data type of the
Value attribute. If you know the data
type in advance, you’ll probably lock
this attribute in the primitive.
Config time set handler: Sets the
Type property of the Value attribute to
the matching type. Only can be done on
templates, not instances.

InputSource Reference Writeable_U
SC_Lockable

Identifies the target attribute from
which the value and quality are to be
read.
Run time set handler: Unregisters
the old reference. Registers the new
reference, sets Value.Quality to
“Initializing,” and ReadStatus to “OK”
(if the object is off scan) or “Pending” (if
on scan).
ArchestrA Object Toolkit Developer’s Guide

92 Chapter 6 Configuring Attributes
Adding an Output
Using an output, you can write single data values to an
external output destination. Often, that destination will be a
DeviceIntegration object attribute that represents a register
or piece of data in a field device, but you can configure any
attribute of any AutomationObject as the output destination.
The actual reference is usually configured by the end user.

If you know the expected data type, specify it and lock it in
the Object Designer after you add the output. Give the output
a useful external name that indicates its purpose to the end
user.

ReadStatus Status Calculated Indicates the cause of any errors while
reading data from the input reference.
This is the Message Exchange status,
not the status of communication to
external devices such as PLCs. The
status is updated on every execution. If
data is successfully received, but
cannot be coerced to the specified data
type, ReadStatus is set to
“Configuration Error.” ReadStatus is
set to “OK” when the object is off scan,
and to “Pending” when it goes on scan.
When Quality is “Bad,” ReadStatus can
be OK or in error.

Value Variant Calculated The value received from the input
reference. The Value attribute is
“calculated” using data received by a
Message Exchange GetAttribute call.
Quality can be one of the following:
• “Initializing” when the object goes

on scan.

• “Bad” if data is successfully
received, but cannot be coerced to
the specified data type.

• “Bad” when the object goes off scan.

• The reported quality of the external
data in all other cases.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

Adding Inputs and Outputs 93
When you add a static (non-virtual) output primitive,
wrapper classes are added automatically. Use these
wrappers to write output values and monitor the write status
at run time. For example, to write an output value:
Output1.Value = myValue;

Or, to check the write status in a subsequent scan cycle:
MxStatus stat = Output1.WriteStatus;

if (stat.Category == MxStatusCategory.MxCategoryOk)

{
(... any required code ...)

}

For virtual output primitives, you can use the primitive’s
attributes instead. For more information, see Attributes of
the Output Primitive on page 94.

For more information on output primitive wrappers and
using the OutputPrimitive wrapper to create instances of a
virtual output primitive, see the ArchestrA Object Toolkit
Reference Guide.

To add an output

1 Open the Object Designer.
2 In the Shape pane, select the location where you want to

add the output. For example, if you want to add an output
to a local primitive, select that primitive or one of its
attributes.

3 In the Shape pane, click the down arrow next to the Add
icon.

4 Click Output. A primitive node for the output is added to
the object tree in the Shape pane. The properties of the
new output are shown in the Configuration pane of the
Object Designer.

5 In the External Name box, enter a unique external name
for the output. This is the name by which other objects
can access the output. The name must be ArchestrA
compliant.

6 In the Internal Name box, enter a unique internal name
for the output. This is the name by which you can refer to
the output in the object’s code. The name must be C#
compliant.
ArchestrA Object Toolkit Developer’s Guide

94 Chapter 6 Configuring Attributes
7 Select the Virtual check box.if the new output primitive
should be virtual.

8 In the Shape pane, click the DataType item underneath
the new primitive node. The Configuration pane now
shows the data type properties.

9 In the Value list, select the data type for the output.
10 In the Shape pane, click the OutputDest item underneath

the new primitive node. The Configuration pane now
shows the output destination properties.

11 In the Value box, enter the output destination reference.
12 Click OK, or go back to step 2 to add more outputs.

Attributes of the Output Primitive
You can use the following attributes of the Output primitive
to monitor or re-configure it at config time and run time.

Name Type Category Description

DataType Data
Type

Writeable_C_
Lockable

Specifies the expected data type of the
Value attribute. If you know the data
type in advance, you’ll probably lock
this attribute in the primitive.

OutputDest Reference Writeable_U
SC_Lockable

Identifies the target attribute to which
the value is to be written.
Run time set handler: Unregisters
the old reference. Registers the new
reference and sets WriteStatus to “OK”
(if the object is off scan) or “Pending” (if
on scan).

Value Variant Calculated The value to be written to the output
destination.
Run time set handler: Caches the
new value and initiates a
SupervisorySetAttribute call to the
output destination on the object’s next
execution.
ArchestrA Object Toolkit Developer’s Guide

Adding Inputs and Outputs 95
Adding an Input/Output
Using an input/output, you can read and write single data
values to and from an external location. You can specify an
input source that is different from the output destination.
This will be the case when the input is read back from a
secondary source location that is different from the output
destination. Some field devices may be set up with separate
input and output locations for security or robustness
purposes.

The actual references are usually configured by the end user.
If you know the expected data type, specify it and lock it in
the Object Designer after you add the input/output. Give the
input/output a useful external name that indicates its
purpose to the end user.

WriteStatus Status Writeable_S Indicates the cause of any errors while
writing data to the output destination.
This is the Message Exchange status
and also, if the output destination is a
DeviceIntegration object, the status of
communication to the external device
(such as a PLC). Updated on each
attempt to write a new value only.
If data is successfully sent, but cannot
be coerced to the specified data type,
WriteStatus is set to “Configuration
Error.” WriteStatus is set to “OK”
when the object is off scan. On a new
write attempt, WriteStatus is initially
set to the temporary value “Pending”
until the write either succeeds or fails.
If the output destination is in a
DeviceIntegration object, the “Pending”
state remains until the
DeviceIntegration object returns
(asynchronously) the actual completion
status to its target, usually an external
field device.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

96 Chapter 6 Configuring Attributes
When you add a static (non-virtual) input/output primitive,
wrapper classes are added automatically. Use these
wrappers to read/write I/O values and monitor the I/O status
at run time.

For virtual input/output primitives, you can use the
primitive’s attributes instead. For more information, see
Attributes of the Input/Output Primitive on page 97.

For more information on input/output primitive wrappers
and using the InputOutputPrimitive wrapper to create
instances of a virtual input/output primitive, see the
ArchestrA Object Toolkit Reference Guide.

To add an input/output

1 Open the Object Designer.
2 In the Shape pane, select the location where you want to

add the input/output. For example, if you want to add an
input/output to a local primitive, select that primitive or
one of its attributes.

3 In the Shape pane, click the down arrow next to the Add
icon.

4 Click Input/Output. A primitive node for the input/output
is added to the object tree in the Shape pane. The
properties of the new input/output are shown in the
Configuration pane of the Object Designer.

5 In the External Name box, enter a unique external name
for the input/output. This is the name by which other
objects can access the input/output. The name must be
ArchestrA compliant.

6 In the Internal Name box, enter a unique internal name
for the input/output. This is the name by which you can
refer to the input/output in the object’s code. The name
must be C# compliant.
ArchestrA Object Toolkit Developer’s Guide

Adding Inputs and Outputs 97
7 Select the Virtual check box.if the new input/output
primitive should be virtual.

8 In the Shape pane, click the DataType item underneath
the new primitive node. The Configuration pane now
shows the data type properties.

9 In the Value list, select the data type for the input/output.
10 In the Shape pane, click the Reference item underneath

the new primitive node. The Configuration pane now
shows the input/output reference properties.

11 In the Value box, enter the output destination reference.
This reference is also used as the input source unless you
configure a separate input source.

12 To configure an input source that is different from the
output destination:
a In the Shape pane, click the

SeparateFeedbackConfigured item underneath the
new primitive node. In the Configuration pane, select
the true/false check box.

b In the Shape pane, click the ReferenceSecondary item
underneath the new primitive node. In the
Configuration pane, enter the input source reference
in the Value box.

13 Click OK, or go back to step 2 to add more inputs/outputs.

Attributes of the Input/Output Primitive
You can use the following attributes of the Input/Output
primitive to monitor or re-configure it at config time and run
time.

Name Type Category Description

DataType Data
Type

Writeable_C_
Lockable

Specifies the expected data type
of the ReadValue and
WriteValue attributes. If you
know the data type in advance,
you’ll probably lock this
attribute in the primitive.
ArchestrA Object Toolkit Developer’s Guide

98 Chapter 6 Configuring Attributes
ReadStatus Status Calculated Indicates the cause of any errors
while reading data from the
input reference. This is the
Message Exchange status, not
the status of communication to
external devices such as PLCs.
The status is updated on every
execution. If data is successfully
received, but cannot be coerced
to the specified data type,
ReadStatus is set to
“Configuration Error.”
ReadStatus is set to “OK” when
the object is off scan, and to
“Pending” when it goes on scan.
When Quality is “Bad,”
ReadStatus can be OK or in
error.

ReadValue Variant Calculated The value received from the
input reference. The ReadValue
attribute is “calculated” using
data received by a Message
Exchange GetAttribute call.
Quality can be one of the
following:
• “Initializing” when the object

goes on scan.

• “Bad” if data is successfully
received, but cannot be
coerced to the specified data
type.

• “Bad” when the object goes
off scan.

• The reported quality of the
external data in all other
cases.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

Adding Inputs and Outputs 99
Reference Reference Writeable_US
C_Lockable

Identifies the target attribute to
which the value is to be written.
If no separate input reference is
specified, this also serves as the
input reference.
Run time set handler:
Unregisters the old reference.
Registers the new reference and
sets WriteStatus to “OK” (if the
object is off scan) or “Pending” (if
on scan).

ReferenceSecondary Reference Writeable_US
C_Lockable

If the
SeparateFeedbackConfigured
attribute is set to TRUE,
ReferenceSecondary identifies
the source attribute from which
the value and quality are to be
read. If left empty, both the
input and output use the single
location specified in the
Reference attribute.
Run time set handler:
Unregisters the old reference.
Registers the new reference, sets
Value.Quality to “Initializing,”
and ReadStatus to “OK” (if the
object is off scan) or “Pending” (if
on scan).
Config time set handler: Only
allows this attribute to be set if
SeparateFeedbackConfigured is
TRUE.

SeparateFeedback
Configured

Boolean PackageOnly_
Lockable

Specifies whether the primitive
receives input data from a
source address that is different
from the output destination.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

100 Chapter 6 Configuring Attributes
WriteStatus Status Writeable_S Indicates the cause of any errors
while writing data to the output
destination. This is the Message
Exchange status and also, if the
output destination is a
DeviceIntegration object, the
status of communication to the
external device (such as a PLC).
Updated on each attempt to
write a new value only.
If data is successfully sent, but
cannot be coerced to the
specified data type, WriteStatus
is set to “Configuration Error.”
WriteStatus is set to “OK” when
the object is off scan. On a new
write attempt, WriteStatus is
initially set to the temporary
value “Pending” until the write
either succeeds or fails. If the
output destination is in a
DeviceIntegration object, the
“Pending” state remains until
the DeviceIntegration object
returns (asynchronously) the
actual completion status to its
target, usually an external field
device.

WriteValue Variant Calculated The value to be written to the
output destination.
Run time set handler: Caches
the new value and initiates a
SupervisorySetAttribute call to
the output destination on the
object’s next execution.

Name Type Category Description
ArchestrA Object Toolkit Developer’s Guide

Configuring “Advise Only Active” Support for an Attribute 101
Configuring “Advise Only Active” Support for
an Attribute

You can implement “Advise Only Active” support for
attributes in your objects and primitives. This allows you to
configure individual attributes to stop updating if noone is
subscribing to them. This reduces the processing and
network load.

When you enable “Advise Only Active” support for an
attribute, the Application Server infrastructure continually
monitors whether there are active subscriptions to that
attribute. When there are no (or no more) subscriptions, it
calls a special, attribute-specific method to notify the
attribute that it should suspend updates. When the first
subscription starts, Application Server calls the same
method again to notify the attribute that it should resume
updates. You can customize this method for each attribute to
suspend or resume subscriptions to any data sources that the
attribute uses.

Typically, you would only implement “Advise Only Active”
support for attributes that are associated with “live” updates
from external sources, e. g. an input or an attribute in
another object that your object subscribes to via Message
Exchange. For example, if noone is polling the value of a
calculated attribute that uses an value from an input
primitive, you could stop requesting the value so as to reduce
the load on the associated I/O server and network.

You can implement “Advise Only Active” support for all
attribute types and categories that are available at run time.
ArchestrA Object Toolkit Developer’s Guide

102 Chapter 6 Configuring Attributes
Note the following:

• Before you can implement “Advise Only Active” support
for individual attributes, you must enable it on the
ApplicationObject level. For more information, see
Enabling “Advise Only Active” Support for the Object on
page 60. To use “Advise Only Active” in a reusable
primitive, it must be enabled in the containing object.

• When you enable “Advise Only Active” support for an
ApplicationObject, all Input and InputOutput primitives
within the object (including its child primitives) are
suspended automatically on startup. In most cases, this
should fit your needs. However, if you have any
attributes that are not configured for “Advise Only
Active” and that require data from these Input or
InputOutput primitives at each scan, you must activate
these inputs at startup time by calling their
ActivateUpdatesList() methods. For example,
Input1.ActivateUpdatesList();.

To implement “Advise Only Active” support for an attribute

1 Enable the “Advise Only Active” option for the attribute:
a Open the Object Designer.
b In the Shape pane, click the attribute name.
c In the Configuration pane, select the Advise only Active

check box.
d Click OK.
The ArchestrA Object Toolkit automatically adds a
method named “AttributeName_AdviseOnlyActive()” to
the run time code. This is the method that the
Application Server infrastructure calls to notify the
attribute that it should suspend or resume updates.

2 In the Object Design View, expand the Attributes folder.
Expand the attribute name.
ArchestrA Object Toolkit Developer’s Guide

Configuring “Advise Only Active” Support for an Attribute 103
3 Double-click the contained Advise only Active node. The
“AttributeName_AdviseOnlyActive()” method section of
the run time code file appears in the Visual Studio code
editor.

4 The if (suspending) branch is executed when
Application Server determines that there are no more
subscriptions to the attribute. Enter code here to suspend
updates from any data sources that the attribute uses.
For example:
• If the data source is an Input or Input/Output

primitive, call its SuspendUpdatesList() wrapper
method.

• If the data source is an attribute in another object,
use the CMxIndirect.Suspend() method.

5 The else branch is executed when subscriptions to the
attribute start again. Enter code here to re-activate
updates from any data sources that the attribute uses.
For more information on available methods, see the
ArchestrA Object Toolkit Reference Guide.

6 When you are done, save your work.
ArchestrA Object Toolkit Developer’s Guide

104 Chapter 6 Configuring Attributes
Renaming or Deleting Attributes
You can rename or delete attributes even if other places in
your object already refer to them. Note the following:

• When you change the internal name of an attribute,
references in your object are automatically updated.
However, you must manually update any references
where the internal name is passed as a string.

• When you change the external name of an attribute, you
must manually update any references where the external
name is passed as a string. This includes any references
in the custom object editor or GetValue/SetValue calls.

• When you delete an attribute, references in your object
are automatically checked and updated, but you must
manually update any references where the internal or
external name is passed as a string.
ArchestrA Object Toolkit Developer’s Guide

105
Chapter 7

Internationalizing Objects

If your object will be used in localized environments, you can
internationalize it by defining a multilingual dictionary that
contains translated strings for the target locales. At run
time, the object can retrieve the appropriate strings for the
locale it is used in, and show those translated strings to the
end user.

About Internationalizing Objects
By internationalizing an object, you enable it to run in
various language environments and use different translated
text messages, prompts, etc. in each case. For example,
assume that you develop a complex object with its own
custom editor pages. Customers in North America would
expect to see English editor pages. On the other hand,
customers in South America might use the object on a
Spanish operating system and expect to see the editor pages
in Spanish.

One way to do this is to create and maintain separate
language versions of the object. However, this makes it very
hard to maintain and update your code. A better way is to
maintain one object version that will use the correct
translated strings depending on the locale it is used in.
ArchestrA Object Toolkit Developer’s Guide

106 Chapter 7 Internationalizing Objects
To do this, you separate the object’s code (which works
identically in all locales) from the translatable text phrases
(which are different for each locale). The translatable content
in the code is replaced with abstract phrase IDs. The object
then retrieves the appropriate translated content for
whatever phrase ID it needs, when it needs it.

If an ApplicationObject contains local primitives, all local
primitives use the object’s main dictionary. Reusable
primitives, on the other hand, have their own dictionary.

To internationalize your objects, the ArchestrA Object
Toolkit provides:

• An object dictionary that stores translated strings for
each resource ID

• A function to retrieve translated strings for a resource ID

For more information, see Configuring the Object Dictionary
and Retrieving Localized Dictionary Strings on page 108.

Configuring the Object Dictionary
For each translatable resource (“phrase”), the object
dictionary defines an ID and translated strings for all locales
that the object will be used in. You could visualize it as a
table like the following:

When you request the phrase “idsWelcome” on an English
operating system, you get the string “Welcome.” On a
Spanish operating system, you get “Bienvenidos” instead,
and so on.

ApplicationObject running in English locale

GetText("idsWelcome");

Phrase ID English Spanish

idsWelcome Welcome Bienvenidos

...

Object Dictionary

Same ApplicationObject running in Spanish locale

GetText("idsWelcome");

Phrase ID English Spanish

idsWelcome Welcome Bienvenidos

...

Object Dictionary

Phrase ID English Spanish German

idsWelcome Welcome Bienvenidos Willkommen

idsValve1 Valve 1 Válvula 1 Ventil 1

...
ArchestrA Object Toolkit Developer’s Guide

Configuring the Object Dictionary 107
The object dictionary is saved as an XML file with the
.aaDCT extension. By default, it contains only a sample
entry, and you have to add phrases and translations before
you can use it.

You can edit the dictionary using any text editor or a special
XML editor. For more information, see Dictionary File
Format and Structure and Editing the Dictionary in Visual
Studio on page 107.

Dictionary File Format and Structure
The XML dictionary file has the following structure:
<Dictionary>

<Phrase_Index PhraseID="SampleEntry">
<Language LangID="1033">

<VALUE>English string</VALUE>
</Language>
<Language LangID="1031">

<VALUE>String translated into German</VALUE>
</Language>
... more <Language> elements for other
languages ...

</Phrase_Index>
<Phrase_Index PhraseID="Entry2">

... <Language> elements ...
</Phrase_Index>

</Dictionary>

There is a single Phrase_Index element for every
translatable string. Its PhraseID attribute defines the ID by
which you can access the string.

Each Phrase_Index element contains one Language element
for each language-specific translation of the string. The
LangID attribute of the Language element specifies the locale
that the translation applies to.

Each Language element contains a single VALUE element
with the translated string for the specified locale.

Editing the Dictionary in Visual Studio
You can directly edit the object dictionary using the built-in
Visual Studio editor.

To edit the dictionary in Visual Studio

In the Object Design View, double-click Dictionary. Visual
Studio opens a tab with the dictionary file.
You can now add or edit strings according to the
dictionary XML structure.
ArchestrA Object Toolkit Developer’s Guide

108 Chapter 7 Internationalizing Objects
Retrieving Localized Dictionary Strings
To retrieve a localized dictionary string at config time or run
time, simply use the GetText method. For example:
GetText("idsError");

This statement gets the translation for the dictionary entry
with the ID “idsError” for the default locale of the process it
is called from. For config time code, this is the default locale
of the Galaxy, i. e. the OS locale at the time the Galaxy was
created.

For more information, see the documentation on the GetText
method in the ArchestrA Object Toolkit Reference Guide.
ArchestrA Object Toolkit Developer’s Guide

109
Chapter 8

Building and Versioning Objects

By building your object, you create an .aaPDF object file that
you can import and use in Wonderware Application Server.
You can:

• Configure build options. You can configure various
options concerning the build process.

• Validate your object. This allows you to find errors
that would cause problems when building or using the
object but that can’t be discovered by Visual Studio’s
standard checking process.

• Manage object versions. You can specify whether to
increment the object’s major or minor version with a
build. You can also override the auto-generated version
number in the object properties.

• Start the build process. The ArchestrA Object Toolkit
can automatically import, instantiate and deploy the
object as part of the build process.

• Analysing migration requirements. If you are
developing a new version of an existing object, the
ArchestrA Object Toolkit can help you to structure the
code for migrating the existing object.
ArchestrA Object Toolkit Developer’s Guide

110 Chapter 8 Building and Versioning Objects
Validating an Object
Validating an object allows you to find errors that would
cause problems when building or using the object but that
can’t be discovered by Visual Studio’s standard checking
process. This is particularly important if you have edited the
object’s code directly. For example, you might try to assign a
value of an invalid type to an attribute. This type of error is
invisible to Visual Studio, but can be discovered by validating
the object.

Your object is validated automatically when:

• You open the Object Designer.

• You build the object.

• You refresh the Object Design View.

You can also start validation manually.

The validation process reports any warnings and errors in
the Logger view and, where appropriate, tries to fix the
underlying issues. The warning and error messages are
self-explanatory, so they are not duplicated here.

If the validation process detects any errors, you must fix
them before you can build or debug the object, use the
Migrate analysis, open the Object Designer, or update the
Object Design View. These features are disabled until you fix
the errors and revalidate the object.

To start validation manually

In the ArchestrA Object Toolkit toolbar, click the Validate
icon.

Configuring Build Options
You can configure build options for all ArchestrA Object
Toolkit projects or just the current project.

• When you configure build options while no ArchestrA
Object Toolkit project is opened, they apply as defaults
for all ArchestrA Object Toolkit projects on that
computer. When you move a project to a different
computer, it uses the defaults configured on that
computer.

• When you configure build options while an ArchestrA
Object Toolkit project is opened, they apply to the current
project and override the defaults. In this case, you can
work with the defaults as follows:
ArchestrA Object Toolkit Developer’s Guide

Configuring Build Options 111
• To restore a certain category of build options to its
default values, click the Default button on its property
page.

• To set the current values as the new default values
for a certain category of build options, click the Set
Default button on its property page.

You can configure the following build options:

• Output preferences to copy the build output to additional
locations

• Galaxy preferences to specify the working Galaxy for the
various build modes

• Additional seach paths for reusable primitives and
dependent files

Configuring Output Preferences
By default, the build output (.aaPDF or .aaPRI file) is saved
in the \Output subfolder of your project folder. Optionally,
the ArchestrA Object Toolkit can copy the build output to a
custom location. When building a reusable primitive, the
.aaPRI file can be copied to the common ArchestrA folder for
reusable primitives.

To configure output preferences

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears with the Build
category selected.

2 To copy the build output to a custom folder, select the
Copy output package to specified folder check box and use
the browse button to select the folder.

3 To copy reusable primitives to the common ArchestrA
folder for reusable primitives after they have been built,
select the Copy reusable primitives to ArchestrA Common
check box. The base folder is always C:\Program
Files\Common Files\ArchestrA\ReusablePrimitives. In
that folder, the ArchestrA Object Toolkit creates a vendor
subfolder based on the vendor name that you configured
for the primitive.
On a 64-bit operating system, the base folder is
C:\Program Files (x86)\Common
Files\ArchestrA\ReusablePrimitives.

4 Click OK.
ArchestrA Object Toolkit Developer’s Guide

112 Chapter 8 Building and Versioning Objects
Configuring Galaxy Preferences
When you build an object, the ArchestrA Object Toolkit can
optionally import, instantiate and deploy the new object
version in a Galaxy so that you can test it. For more
information, see Building an Object on page 117. You can
specify which Galaxy to use for this.

To configure Galaxy preferences

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears.

2 In the left pane, click Galaxy. The Galaxy options appear
in the right pane.

3 In the GR Node Name box, enter the name of the Galaxy
Repository node. In most cases, it will be best to use a
Galaxy Repository on the local machine. Otherwise, the
build process can’t automatically restart the Application
Server processes to make sure that the latest object
version gets used.

4 In the Galaxy list, enter or select the name of the Galaxy
to use.

5 If security is enabled for the Galaxy, enter the credentials
in the User Name and Password boxes.

6 In the Assign to Area box, enter the name of the Area
object that instances of your object should be assigned to.

7 To test the Galaxy connection, click Test.
8 Click OK.
ArchestrA Object Toolkit Developer’s Guide

Managing an Object's Versions 113
Configuring Additional Search Paths
You can configure additional seach paths for dependent files.
This gives you more flexibility because you can store your
development files in multiple locations.

To configure additional search paths

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears.

2 In the left pane, click Search Paths. The Locations list
appears in the right pane.

3 Edit the Locations list as follows:
• To add the first entry, enter the search path in the

text box, or click the browse button and select a path.
Press Enter to confirm.

• To add another entry, click the blank entry at the end
of the list twice. The entry changes into editing mode.
Enter the path as described above.

• To edit an existing entry, click it twice to change into
editing mode, then make your changes as described
above.

4 Click OK.

Managing an Object's Versions
An ApplicationObject has a version number that consists of a
major version and a minor version. For example, “1.3” where
1 is the major version and 3 is the minor version. This
version number helps Wonderware Application Server
distinguish object versions and detect any migration
requirements.

When you build your object, you can keep the current version
number, or you can automatically increment the minor or
major version. You can also specify the version numbers
manually in the object properties.

While developing an object, it is safest to have the major
version number increment automatically on new builds. This
helps avoid problems if you change the object shape but
forget to increment the major version accordingly.
ArchestrA Object Toolkit Developer’s Guide

114 Chapter 8 Building and Versioning Objects
Building a New Minor Version of an Object
You usually increment an object’s minor version after
making small changes to the object code. For example, you
should increment the minor version after fixing bugs or
making optimizations. If you change the object shape in any
way, you must increment the major version instead.

When you build a new minor version of an object, you can
choose to automatically restart Application Server processes.
This is necessary if you have already imported a previous
version of the object with the same major version into your
Application Server working Galaxy. If you don’t restart the
processes, Application Server continues to use the previous
version even after you import the new minor version.

Depending on which components of your object have
changed, you must restart different processes:

• After making changes to config time code, you must
restart the aaGR and IDE processes.

• After making changes to run time code, you must restart
the Bootstrap process.

• After making changes to custom object editor code,
you must restart the IDE process.

When you build a new minor version and restart the
processes, the ArchestrA Object Toolkit performs the
following steps in the order listed:

1 Undeploys existing instances of the object
2 Deletes existing instances of the object
3 Deletes the existing object template(s)
4 Stops the processes
5 Builds the object
6 Restarts the processes
7 Performs any other steps as defined by the build mode

(import. instantiate, deploy)
The ArchestrA Object Toolkit can only restart processes
running on the local machine. For example, if you are using a
remote Galaxy Repository (GR) machine or if you have
deployed your object to a remote machine, you must restart
the relevant processes manually. To specify the GR node, see
Configuring Galaxy Preferences on page 112.
ArchestrA Object Toolkit Developer’s Guide

Managing an Object's Versions 115
To build a new minor version of an object

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears.

2 In the left pane, click Version.
3 Select the Increment Minor Version option.
4 Select the Restart Bootstrap, Restart aaGR and Restart IDE

check boxes as required (see above). If you select Restart
aaGR, Restart IDE is always selected as well.

5 Click OK.
6 Build your object.

Building a New Major Version of an Object
You increment an object’s major version after making
extensive changes to the object code, behavior and/or shape.
For example, you should increment the major version after
adding or renaming attributes. This alerts the user that the
new version may not behave the same as previous versions,
which might impact the user’s application.

While you develop an object, we recommend that you use this
setting to have the major version number increment
automatically on new builds. This helps avoid problems if
you change the object shape but forget to increment the
major version accordingly.

When you build an object with a new major version, you can
choose to automatically delete the old version’s templates
and instances from your working Galaxy. Alternatively, you
can have the new version imported with the version number
appended to the template name. This allows you to keep
multiple versions of the same template in the Galaxy without
having to manually rename existing templates.

To build a new major version of an object

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears.

2 In the left pane, click Version.
3 Select the Increment Major Version option.
ArchestrA Object Toolkit Developer’s Guide

116 Chapter 8 Building and Versioning Objects
4 Specify what to do with existing templates and instances
if the ArchestrA Object Toolkit automatically imports the
new object version into the Galaxy.
• To keep the old template version and import the new

version with the version number appended to its
name, select the Append version number to template
name check box.

• To delete all previous versions of the object template
(as determined by its vendor and object name), select
the Delete all templates with the same vendor and
object name check box. Any instances of these
templates are deleted too.

• To delete all previous versions of the object template
and import the new version with the version number
appended to its name, select the Delete all templates
and append version number check box.

5 Click OK.
6 Build your object.

Creating a New Build without Incrementing the
Version Number

You can create a new build without incrementing the object’s
current version number. For example, you would do this if:

• You are using an automated build system that only
recompiles the project.

• You set the final version number manually before release
and don’t want the final build to increment that number.

When you build an object using this option, the only available
build modes are Build and Build & Swap.

To build an object without incrementing the version number

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears.

2 In the left pane, click Version.
3 Select the Retain current version number option.
4 Click OK.
5 Build your object.
ArchestrA Object Toolkit Developer’s Guide

Building an Object 117
Manually Specifying the Version Number
If you want to reset the auto-generated version number, you
can manually specify the object’s version number.

To manually specify the version number

1 Open the Object Designer.
2 In the Shape pane, click the object name. The object

properties appear in the Configuration pane on the right.
3 In the Major Version and Minor Version boxes, enter the

object’s major and minor version. If you increment the
major version, you should reset the minor version to 1.

4 Click OK.

Building an Object
After you have set all build and versioning options and
validated your object, you can build it. This creates an
.aaPDF object file that you can import and use in
Wonderware Application Server.

The ArchestrA Object Toolkit can automatically import,
instantiate and deploy the object as part of the build process.
To specify this, use the Mode list in the ArchestrA Object
Toolkit toolbar.

The following build modes are available:

Build Mode Description

Build Creates an .aaPDF file of the object in
the \Output subfolder of the Visual
Studio solution folder.

Build & Import Creates an .aaPDF file as outlined
above, and then imports the template
into the working Galaxy.

Build & Inst Creates an .aaPDF file as outlined
above, imports the template into the
working Galaxy, derives a new template
from it, and creates an instance from
that template. The instance is assigned
to the area configured in the Galaxy
preferences (if any).
ArchestrA Object Toolkit Developer’s Guide

118 Chapter 8 Building and Versioning Objects
To specify the working Galaxy and Area object for importing,
instantiating and deploying the object, see Configuring
Galaxy Preferences on page 112.

To build an object

1 In the ArchestrA Object Toolkit toolbar, click the desired
build mode in the Mode list. See above for available
options.

2 Click the Build icon.
The ArchestrA Object Toolkit now starts the build and
performs any other actions specified by the build mode. Any
errors or warnings are reported in the Logger pane. The
build output (.aaPDF or .aaPRI file, aaDEF file) is stored in
the Output subfolder of your project folder.

Build & Deploy Creates an .aaPDF file as outlined
above, imports the template into the
working Galaxy, derives a new template
from it, creates an instance from that
template, and deploys it. The instance is
assigned to the area configured in the
Galaxy preferences (if any).

Build & Swap Allows you to quickly swap the existing
object assemblies in the Windows Global
Assembly Cache (GAC). This is handy
for debugging as it saves you the time
for undeploying and redeploying an
existing object instance. Don’t use this
option if you have changed the object
shape. Otherwise, unexpected results
may occur.

When you use this option, you must
specify which processes to restart:

• IDE if you have made changes to the
custom object editor

• IDE and aaGR if you have made
changes to the config time code

• Bootstrap if you have made changes
to the run time code

Build Mode Description
ArchestrA Object Toolkit Developer’s Guide

Migrating Objects 119
Migrating Objects
When you import a new major version of an object template
into Wonderware Application Server, existing instances of
that object can be automatically migrated. This allows you to
preserve their configuration in the new object version.

This is very easy if the new object version uses the same
attributes as the previous version. In this case, all attribute
values are automatically copied over from the old version’s
instances to the new version’s instances.

However, you must create custom migration code if:

• The new version has attributes that the old version
doesn’t have, and vice versa; and/or

• The security classification of an attribute has changed in
the new version.

In this scenario, the custom migration code handles the
mapping of attribute values between the old and new
version. For example, if you have changed an attribute’s
name from “Attribute1” to “AttributeA,” but the attribute
still has the same purpose, the migration code could copy the
value of Attribute1 (in the old version) to AttributeA (in the
new version).

The ArchestrA Object Toolkit can help you create the
migration code by generating a list of which attributes were
added, removed, or have changed. You simply select a
previous object version, and the ArchestrA Object Toolkit
inserts a code region containing the names of all attributes
that have changed between the previous version and the
current version you’re developing. You can then add
migration code for each attribute. For a short example, see
Example: Migrating a Previous Object Version on page 121.

To create a migration code section for a previous version.

1 In the ArchestrA Object Toolkit toolbar, click the Migrate
icon. The Browse for aaPDF and aaPRI Files dialog box
appears.

2 Select the .aaPDF file of the previous object version (or
the .aaPRI file if you are developing a reusable
primitive), and then click Open. You can now view the
auto-generated migration analysis results.
ArchestrA Object Toolkit Developer’s Guide

120 Chapter 8 Building and Versioning Objects
3 In the Object Design View, expand the Configtime folder,
and then double-click the Migrate item. The migration
results section opens in the code editor.

Note that the ArchestrA Object Toolkit has inserted a new
code region showing the differences between the two
versions. Enter any required migration code for the previous
version here. For more information on available methods, see
the ArchestrA Object Toolkit Reference Guide.

The ArchestrA Object Toolkit has also automatically updated
the ObjectAttributes.Migrate property to include the version
number of the object that you selected in step 2. This tells
Application Server that your ApplicationObject supports
migrating from that version. For more information on this
property, see the ArchestrA Object Toolkit Reference Guide.

You can repeat this process for multiple previous versions of
an object. The ArchestrA Object Toolkit generates a separate
code region for each previous version. This allows you to have
migration code for multiple previous versions in the same
object.
ArchestrA Object Toolkit Developer’s Guide

Migrating Objects 121
Example: Migrating a Previous Object Version
See the example code region of the Migrate config time event
handler for a short example of migration code. In this
example, major version 1 of the object had an attribute
named “Eg_001,” which was renamed to “Example_001” in
the current version. The migration code transfers the value
and settings of the old attribute to the new attribute:
if (migrate.MajorVersion() == 1)

{
//Transfer attribute value, lock and security
classification
Example_001 = migrate.GetValue("Eg_001");
//Gets value
Example_001.Locked = migrate.GetLocked("Eg_001");
//Gets lock status
Example_001.Security =
migrate.GetSecurityClassification("Eg_001");
//Gets Security Classification

//Transfer primitive values
SetValue("Example_001.TrendHi",
migrate.GetValue("Eg_001.TrendHi"));
Set("Example_001.TrendHi",
EATTRIBUTEPROPERTY.idxAttribPropLocked,
migrate.GetLocked("Eg_001.TrendHi"));

//Automatically migrate all child primitives
migrate.AutoMigrateChildPrimitives = true;

}

Note the “if” condition at the beginning of the code. Using
similar conditions, you can have additional, separate
migration code sections for other previous major versions of
the object.

Additional Guidelines for Migrating Objects
Note the following when developing migration code for your
objects:

• Make sure that your migration code is aware of the
presence or absence of child virtual primitives.

• When migrating attributes within a reusable primitive,
the migration code must use the full primitive name to
access the attribute in the original object being migrated
from. You can use the OriginalPrimitiveFullName
property in the MigrateHandler class for this purpose.
For example:

migrate.GetValue(migrate.OriginalPrimitiveFullName
+ ".Attribute1")
ArchestrA Object Toolkit Developer’s Guide

122 Chapter 8 Building and Versioning Objects
ArchestrA Object Toolkit Developer’s Guide

123
Chapter 9

Debugging Objects

The ArchestrA Object Toolkit allows you to attach the Visual
Studio debugger to the Application Server processes running
your object’s code. This allows you to troubleshoot and debug
your objects. In order to use the debugging features, you
must use the object on a computer that has Visual Studio
installed.

Caution Never debug objects on a production system. Always use
a development node with a local Galaxy for debugging.

Caution Never ship an object that was created from a debug
build. These objects may require debug modules and may not
function correctly in a production environment.

There are two ways for attaching the debugger:

• If you have already created a build with the required
PDB files and instantiated or deployed the object on the
local system, you can attach the debugger to the
Application Server processes running the current object
version and debug that version.

• If you’ve made changes to your object and want to debug
the new version, you can attach the debugger as part of
the build process and then debug the new version.
ArchestrA Object Toolkit Developer’s Guide

124 Chapter 9 Debugging Objects
Attaching the Debugger to the Processes
Running the Current Object Version

If you want to debug the current version of an object that you
have already instantiated or deployed on the local system,
you can attach the debugger to the Application Server
processes running the current object version. There are two
prerequisites for this:

• You must have created the required PDB (Program
Database) files as part of the current build.

• Visual Studio must be able to find the PDB files. If
necessary, set up the search paths in Visual Studio
accordingly.

For help on these points, refer to the Visual Studio
documentation.

To attach the debugger to the processes running the current
object version

1 In the ArchestrA Object Toolkit toolbar, click the Debug
icon. The Debug dialog box appears.

2 Select one or more of the following check boxes:
• Attach IDE Debugger to debug custom editor code
• Attach Configuration Debugger to debug config time

code
• Attach Runtime Debugger to debug run time code

3 Click OK. Visual Studio switches into debugging mode.
You can now work with your object and use the
debugging features as required.

4 To stop debugging, click the Debug icon in the ArchestrA
Object Toolkit toolbar again.
ArchestrA Object Toolkit Developer’s Guide

Attaching the Debugger during the Build Process 125
Attaching the Debugger during the Build
Process

If you’ve made changes to your object and want to debug the
new version, you can attach the debugger as part of the build
process and then debug the new version.

To attach the debugger during the build process

1 In the ArchestrA Object Toolkit toolbar, click the Options
icon. The Options dialog box appears with the Build
category selected.

2 Select one or more of the following check boxes:
• Attach IDE Debugger to debug custom editor code
• Attach Configuration Debugger to debug config time

code
• Attach Runtime Debugger to debug run time code

3 Click OK.
4 In the ArchestrA Object Toolkit toolbar, select a build

mode in the Mode list. For example, to debug config time
or custom editor code, Build & Inst is convenient.

5 Click the Build icon to launch the build. Once the build is
finished, Visual Studio switches into debugging mode.
You can now work with your object and use the
debugging features as required.

6 To stop debugging, click the highlighted Debug icon in the
ArchestrA Object Toolkit toolbar.
ArchestrA Object Toolkit Developer’s Guide

126 Chapter 9 Debugging Objects
ArchestrA Object Toolkit Developer’s Guide

127
Appendix A

Programming Techniques

Use the following workflow and programming techniques to
code within the ArchestrA Object Toolkit (AOT).

Programming Workflow
Using the AOT, you can seamlessly modify the object shape
as the object is coded. The AOT also supports changing the
ArchestrA attribute data type and renaming ArchestrA
attributes and child primitives. This functionality, referred
to as round-tripping, has been implemented by configuring
the object shape in code. The code is parsed at build time to
form the object’s aaDEF file that defines its shape.

Use the Object Designer to modify the the object shape code.
The Designer parses the object shape from the code.
Modifications made in the Object Designer are then written
back to the code. The Object Designer also enables you to
perform tasks that impact multiple code sections
simultaneously, such as renaming ArchestrA attributes,
adding local primitives, and making changes associated with
modifying an object’s major version.
ArchestrA Object Toolkit Developer’s Guide

128 Appendix A Programming Techniques
The basic steps of the workflow are:

1 Define the object shape using either the ArchestrA Object
Toolkit Designer or in code directly.

2 Code the Configtime.
3 Code the Editor for the object.
4 Code the Runtime.
5 Build and import the object.
6 Test and debug the object.

Note We recommend that you define the object shape with the
ArchestrA Object Toolkit Designer and use code only when
necessary. Refer to Advanced Techniques on page 151 for
information on coding the shape of the object.

The following is an overview of the AOT workflow from
Object creation through to debugging.

Entry Option 1

Entry Option 2

Open MS VS

Open Existing
Toolkit Object
Using MS VS

Create New
Toolkit Object

Modify Object
Shape & Code

Integrated UI
(Object

Designer)

Build (Save,
Compile, and

Package)

IAS Import
(Debug)

Note: the Object Designer allows the
user to configure the Object Shape using

an integrated UI. The Object Designer
parses the project code for Shape

information.

Note: Build implements the Toolkit Pre-
Build and Post-Build steps for creating the

aaDEF, packaging the Object (ODS),
Importing, Instantiation and deploying the

Object.

Microsoft Visual Studio (MS VS)

Wonderware Application Server (WAS)

Modification
Required Y

N

Note: Import and Deploy can be performed
by the Build, as stated above, or by the user

via the aaIDE. The debugger can be
configured to attach to the aaGR, aaIDE,
and/or aaEngine when the Object is built.

User preferences determine the action taken
when the Build imports an object into a

Galaxy (i.e. undeploy and delete existing
template, rename incoming template, or

hotswap assemblies and restart processes.
ArchestrA Object Toolkit Developer’s Guide

Configuring Internal and External Names 129
Configuring Internal and External Names
Internal names apply to objects, primitives, and attributes.
Internal names are used in code and must be C# compliant.

Do not use .NET keywords, names of classes in the ArchestrA
Object Toolkit, or names used in other libraries that are used
in your code as internal names for objects, primitives, and
attributes.

Internal names are used in code to refer to the primitive or
attribute in C# through provided wrapper classes.

The maximum length of an object’s internal name is 255
characters.

The external name is used in the ArchestrA IDE and can be
used to create default names for object instances. Each name
should be meaningful and suggest the meaning of the object,
primitive, or attribute.

External names must be ArchestrA compliant and cannot
have any of the following characters: (space) + - * / \ = () ` ~ !
% ^ & @ [] { } | : ; " , < > ? "

Note For the sake of brevity, do not use the word "Object" or
"Template" in an object's name.
ArchestrA Object Toolkit Developer’s Guide

130 Appendix A Programming Techniques
Providing Wrappers for Referencing
ArchestrA Attributes

Attribute wrappers provide the following functionality for
non-dynamic local attributes and non-virtual child primitive
attributes:

• Strongly typed attribute references

• Automatic renaming of attribute references

• IntelliSense

Note Renaming an attribute property causes Visual Studio to
rename all references to the attribute in code except for string
based references. For example, renaming Attribute1 does not
modify “GetValue(“Attribute1”)”.

Modifying an attribute internal name using the Object
Designer renames the Attribute property (known also as the
attribute wrapper).

Using the Object Designer to modify the child primitive
internal name, that is, the fully scoped name of the
referenced attribute, also renames the Attribute property.

Note Wrappers are updated each time the solution is parsed, that
is, when the Object Designer is opened, the object is built, the
Object Design View is refreshed, or Code Validate is selected.
ArchestrA Object Toolkit Developer’s Guide

Config Time Coding 131
Config Time Coding
Use the following techniques to code for the Configtime
project.

The Configtime project is used to provide all logic related to
configuring the attributes of the object within the Galaxy
database.

Config Time Set Handler
Use the config time set handler to implement any logic
required for setting the value of an attribute at configuration
time.

This logic could include, for example, range checking and
adding or removing virtual primitives.

You can add a Configtime set handler to an attribute by
adding a set handler delegate and associated method to the
Configtime class.

The Configtime class template provides commented out
examples of a set handler delegate and method.

The set handler registration and associated methods are not
renamed when the attribute is renamed in code. To remove
the set handler, comment out or delete the registration. The
Set Handler method can exist without the set handler
registration; however, the method is not called.

In the following examples Attribute1 represents the internal
and external name of the attribute.

The Configtime set handler is triggered when an attribute is
changed at configuration time. It can be used for validation
or to trigger a special action such as adding virtual
primitives.

For additional information, see Configuring Config Time Set
Handlers on page 74.
ArchestrA Object Toolkit Developer’s Guide

132 Appendix A Programming Techniques
Set Handler Code
Attribute1.SetHandlerValue enables the set handler code to
appear the same for both array and non-array attributes.
You can take more control of setting the value by using the
following code examples:

• Non-array attribute:

Attribute1 = e.Value;

• Array attributes:

if (!e.IsArrayElement)
{
 Attribute1 = e.Value;
}
else
{
 Attribute1[e.attributeHandle.shIndex1] =
e.Value;
}

Performing Config Time Validation with the
ConfigtimeValidate() Method

Use this method to validate the entire object as a whole when
it is being saved. The method can put the object in a warning
or error state by using EPACKAGESTATUS enum.

Example:
private void

AOTObject4Configtime_ConfigtimeValidate(object
sender, ref EPACKAGESTATUS status)
{

// By default set the object status to Good
if (HiLimit < LoLimit)

{
status = EPACKAGESTATUS.ePackageBad;
AddErrorMessage("Hi Limit must be greater
than or equal to Lo Limit");

}
else
{

status = EPACKAGESTATUS.ePackageGood;
}

}

ArchestrA Object Toolkit Developer’s Guide

Config Time Coding 133
Adding a Virtual Primitive at Config Time with
AddPrimitive

You can test the ability to add an instance of a virtual
primitive at config time using the following function (Boolean
result):
bool CanAddPrimitive(string virtualPrimitiveName,

string internalName, string externalName);

The following example uses CanAddPrimitive to check before
adding a primitive:
if (CanAddPrimitive("c1", "MyCP1InternalName",

"MyCP1ExternalName"))

{

 AddPrimitive("c1", "MyCP1InternalName",
"MyCP1ExternalName");

}

Where:

• c1 is the internal name of the virtual primitive.

• MyCP1InternalName is the internal name of the
Primitive Instance.

• MyCP1ExternalName is the external name of the
primitive instance.

You can add an instance of a virtual primitive at config time
and check the result using PrimitiveResult.message as
shown in the following example:
private void Attribute1SetHandler(object sender, ref

ConfigtimeSetHandlerEventArgs e)

{

 Attribute1.SetHandlerValue = e;

 if (e.Value)

 {

 if (!AddPrimitive("c1", "MyCP1InternalName",
"MyCP1ExternalName"))

 {

 e.Message = PrimitiveResult.message;

 return; // Add failed

 }

 }
}

ArchestrA Object Toolkit Developer’s Guide

134 Appendix A Programming Techniques
Where:

• c1 is the internal name of the virtual primitive

• MyCP1InternalName is the internal name of the
Primitive instance

• MyCP1ExternalName is the external name of the
Primitive instance

• Attribute1 is a Boolean Attribute with a config time set
handler.

Note PrimitiveResult.message returns a message only on failure.
To return status, use PrimitiveResult.status
(EPRIMITIVEOPSTATUS).

Use to following example to iterate through the child
primitives or child virtual primitives:
object primitives;

this.Site.ChildVirtualPrimitives(ThisPrimitive, out
primitives);

foreach (IPrimitiveShape ips in
(IEnumerable)primitives)

{
LogInfo(ips.FullName);

}

Removing a Virtual Primitive at Config Time with
DeletePrimitive

You can test the ability to delete an instance of a virtual
primitive at config time using the following function (Boolean
result):
bool CanDeletePrimitive(string internalName);

Note CanDelete checks the lock status of the primitive being
deleted.

Example:
if (CanDeletePrimitive("MyCP1InternalName"))

{

 DeletePrimitive("MyCP1InternalName");
}
ArchestrA Object Toolkit Developer’s Guide

Config Time Coding 135
Where:

MyCP1InternalName is the primitive instance being deleted.

You can delete an instance of a virtual primitive at config
time and check the result using PrimitiveResult.message as
shown in the following example:
private void Attribute1SetHandler(object sender, ref

ConfigtimeSetHandlerEventArgs e)

{

 Attribute1.SetHandlerValue = e;

 if (!e.Value)

 {

 if (!DeletePrimitive("MyCP1InternalName"))

 {

 e.Message = PrimitiveResult.message;

 return; // Delete failed

 }

 }
}

Where:

• c1 is the internal name of the virtual primitive.

• MyCP1InternalName is the internal name of the
Primitive instance.

• MyCP1ExternalName is the external name of the
primitive instance.

• Attribute1 is a Boolean attribute with a config time set
handler.

Note PrimitiveResult.message only returns a message on failure.
To return status use PrimitiveResult.status (EPRIMITIVEOPSTATUS).
ArchestrA Object Toolkit Developer’s Guide

136 Appendix A Programming Techniques
Accessing Data in Attributes at Config Time
For static attributes, use attribute wrappers based on
internal name to read/write value.

For dynamic attributes or attributes in a virtual primitive,
use the GetValue and SetValue methods.
Examples:
If the static float attribute is named HiLimit:
float myVal;
myVal = HiLimit;

If the dynamic float attribute is named HiLimit:
float myVal;
myVal = GetValue(“HiLimit”);

Accessing Data in Other Primitives at Config
Time

For static primitives, use primitives and attributes wrappers
based on internal name to read/write value.

For attributes in a virtual primitive, use the GetValue and
SetValue methods.
Examples:
To access a float attribute with an internal name of HiLimit,
of a static child primitive with the internal name Limits:
float myVal;
myVal = Limits.HiLimit;

To access a float attribute with an external name of HiLimit,
of an instance of a virtual child primitive with the external
name Limits:
float myVal;
myVal = GetValue(“Limits.HiLimit”);

Adding and Deleting Dynamic Attributes at
Config Time

Use the following code to add/remove a dynamic attribute.
bool status = AddAttribute("dynAttr1",

MxAttributeCategory.MxCategoryCalculated,
MxDataType.MxDouble, false);

DeleteAttribute("dynAttr1");

For more information on these methods, see the ArchestrA
Object Toolkit Reference Guide.
ArchestrA Object Toolkit Developer’s Guide

Run Time Coding 137
Run Time Coding
Use the following techniques to code for run time. For more
information on these methods, see the ArchestrA Object
Toolkit Reference Guide.

Runtime SetHandler
Use a run time set handler to implement any logic required
to set an attribute value at run time, including range
checking and accepting or rejecting the set.

You can add a run time set handler to an attribute by adding
a set handler delegate and associated method to the Runtime
class.

The Runtime class template provides commented out
examples of a set handler delegate and method.

The set handler registration and associated methods are not
renamed when the attribute is renamed in code. To remove
the set handler, comment out or delete the registration. The
Set Handler method can exist without the set handler
registration; however, the method is not called.

In the following examples Attribute1 represents the attribute
internal and external name.

The run time set handler registration appears in the
Runtime class in the following region:
#region Runtime Set Handler Registration - Toolkit

generated code

#endregion Runtime Set Handler Registration

The run time Set Handler registration for Attribute1 appears
as:
this.RegisterRuntimeSetHandler("Attribute1.ex", new

RuntimeSetHandlerDelegate(Attribute1SetHandler));

Remarks
The delegate is registered to the external name of the
Attribute. In this example, the text "Attribute1.ex"
represents the external name for Attribute1.

The run time set handler method for Attribute1 appears at
the end of the Runtime class as:
private void Attribute1SetHandler(object sender, ref

RuntimeSetHandlerEventArgs e)

{

Attribute1.SetHandlerValue = e;

}

For additional information, see Configuring Run Time Set
Handlers on page 76.
ArchestrA Object Toolkit Developer’s Guide

138 Appendix A Programming Techniques
Set Handler Code
Attribute1.SetHandlerValue enables the set handler code to
appear the same for both array and non-array Aattributes.
You can take more control of setting the value by using the
following code examples:

• Non-array attribute:

Attribute1 = e.Value;

• Array attributes:

if (!e.IsArrayElement)
{
 Attribute1 = e.Value;
}
else
{
 Attribute1[e.attributeHandle.shIndex1] =
e.Value;
}

SetInfo Structure Event Arguments
Event arguments to provide the run time set handler event
with the required data:
public class RuntimeSetHandlerEventArgs :

SetHandlerEventArgs

{
// an attribute to pass in the Set Info:
SetInfo attributeInfo;

// an attribute to pass out the status:
MxStatus status;

// Constructor
RuntimeSetHandlerEventArgs(AttributeHandle
pAttributeHandle, SetInfo pInfo, MxStatus _status,
IMxValue pMxValue);

}

Coding a RuntimeExecute() Method
Use this method to get inputs, perform calculations, set
outputs, and set alarm Booleans.

Note This is the most important run time method, but it needs to
be efficient and not time-consuming, or it could cause scan
overruns.

Example:
If the object is called Test:

Test_RuntimeExecute()
ArchestrA Object Toolkit Developer’s Guide

Run Time Coding 139
Returning an Error Status String at Run Time
Use the RuntimeGetStatusDesc method to return an error
message string associated with a previously returned error
code from a sethandler.
Example:
private void xxx_RuntimeGetStatusDesc(object sender,

ref RuntimeGetStatusDescEventArgs e)
{

//--

// TODO: Runtime Event - GetStatusDesc
//
// This routine provides a String for an
// error code when a client requests it.
// By default this method looks for an entry
// in the dictionary that has the
// DetailedErrorCode as the PhraseID.
//
// You need to change this implmentation if
// you want to provide embedded values
// within your messages, or you want to use
// string PhraseIDs instead of integer
// PhraseIDs.
//--

switch (e.detailedErrorCode)
{

default:
e.status = GetText((int)e.detailedErrorCode);
break;

}
}

RuntimeGetStatusDesc Event
Delegates added to this event are called when the event is
fired by ArchestrA:
event RuntimeGetStatusDescDelegate

RuntimeGetStatusDesc;
ArchestrA Object Toolkit Developer’s Guide

140 Appendix A Programming Techniques
Event Handler for Get Status Description
Use the following to provide the GetStatusDescription event
with the required data:
class RuntimeGetStatusDescEventArgs : EventArgs
{

// an attribute to pass out the detailed error code:
short detailedErrorCode;

// an attribute to pass out the status:
string status;

// Constructor:
RuntimeGetStatusDescEventArgs();

}

Manipulating Data Quality at Run Time
Use code to read data quality from and write data quality to
attributes.
Example:
myAttribute = Input1.Value.Value;

myAttribute.Quality = Input1.Value.Quality;

if(myAttribute.Quality.isBad)

{

 // then do something like set alarm

 ...

}

Manipulating the Timestamp at Run Time
Use code to read and write the time stamp at run time.
Example:
myAttribute = Input1.Value.Value;
myAttribute.Time = Input1.Value.Time;
ArchestrA Object Toolkit Developer’s Guide

Run Time Coding 141
Getting Input (I/O) Values Using Utility Primitives
at Run Time

Use code to read input value, status and quality from Input
or InputOutput utility primitives. Use wrapper classes if the
utility primitive is static; otherwise, use GetValue.
Examples:
Input primitive:
myAttribute = Input1.Value.Value;
CMxStatus myStatus = Input1.ReadStatus;

InputOutput primitive:
myAttribute = InputOutput1.ReadValue;

CMxStatus myStatus = InputOutput1.ReadStatus;

myAttribute.Quality = InputOutput1.ReadValue.Quality;

myAttribute.Time = InputOutput1.ReadValue.Time;

Setting Output (I/O) Values Using Utility
Primitives at Run Time

Code utility primitives to write output value and read status
from Output or InputOutput Utility Primitive. Use wrapper
classes if the Utility Primitive is static; otherwise, use
SetValue.
Examples:
Output primitive:
Output1.Value = myValue;
Output1.Value.Time = myTime;

InputOutput primitive:
InputOutput1.WriteValue = myValue;
InputOutput1.WriteValue.Time = myTime;

Writing to the Quality of the Input, Output, or InputOutput
primitive wrapper is not supported. The Quality of Value,
WriteValue, and ReadValue is read-only. For example,
attempting to set InputOutput1.WriteValue.Quality =
SomeAttribute.Quality may result in an erroneous value
(InputOutput1.WriteValue.Value) to be written to the output
location.
ArchestrA Object Toolkit Developer’s Guide

142 Appendix A Programming Techniques
Accessing Data in Attributes at Run Time
For static attributes, use attribute wrappers based on the
internal name to read or write values, quality, and time
stamps.
Example:
 If attribute is called Attribute1, just use Attribute1 in code.
int i = Attribute1;

For dynamic attributes or attributes in a virtual primitive,
use the GetValue and SetValue methods.
Example:
For virtuals and dynamics:
GetValue("attribute1");

or
GetValue(primitiveId, attributeId);

See the AObjectBase class definition for further details on
the GetValue member.

Accessing Data in Other Primitives at Run Time
For static primitives, use primitives and attributes wrappers
based on the internal name to read/write value, quality, and
time stamp.

For attributes in a virtual primitive, use the GetValue and
SetValue methods.
Examples:
prim1.attribute1 = 23.0; // for static primitives
and attributes

int i = GetValue("prim1.attribute1"); // for dynamic
primitives and attributes

SetValue("prim1.attribute1",23.0); // for dynamic
primitives and attributes
ArchestrA Object Toolkit Developer’s Guide

Run Time Coding 143
Adding and Deleting Dynamic Attributes at Run
Time

Use the following code to add/remove a dynamic attribute in
run time code.
bool status = AddAttribute("dynAttr1",

MxAttributeCategory.MxCategoryCalculated,
MxDataType.MxDouble, false);

DeleteAttribute("dynAttr1");

Supporting AdviseOnlyActive at Run Time
Application Server can suspend the input polling required for
an attribute when that attribute is not currently being used,
such as when it is not being viewed by a client, alarmed,
script-referenced, or historized. For more information on the
AddAttribute methods and overloads, see the ArchestrA
Object Toolkit Reference Guide.

The Advise Only Active feature of the run time
infrastructure determes whether an attribute is currently
being used or not, and can suspend and activate that
attribute at the appropriate time.

The ApplicationObject must determine which attributes are
eligible candidates to be suspended when not being used. The
ApplicationObject must also turn off the input polling
required for an attribute when suspended, and turn the input
polling back on when the attribute is activated.

To enable AdviseOnlyActive:

1 Determine whether or not the Object should support
Advise Only Active functionality. If so, enable the Advise
Only Active supported check box in the Object Editor.

2 Determine for each primitive being developed what
attributes are eligible for Advise Only Active
functionality. These typically will only be attributes that
are updated or associated with “live” updates from
external sources, usually from input type primitives.
They can also be subscriptions using MX.
ArchestrA Object Toolkit Developer’s Guide

144 Appendix A Programming Techniques
3 In either the code or the object editor, set “Advise Only
Active” in the selected attributes to True.

Note In the Runtime Startup method, the auto-generated code
checks whether AdviseOnlyActiveEnabled is enabled for the
object. If AdviseOnlyActiveEnabled is enabled , the
auto-generated code calls SuspendLocalAttribute() for each
attribute supporting Advise Only Active.

4 Implement the body of the provided
AttributeName_AdviseOnlyActive() method for each
attribute supporting Advise Only Active:
a The method shell is auto-generated.
b Fill in code in this method to take necessary actions

to activate or suspend updates of polled data related
to the specified attribute being activated. Typically,
an Input primitive or InputOutput primitive wrapper
is called, such as:

Input1.ActivateUpdatesList()

InputOutput1.ActivateUpdatesList()

5 You can also choose to take other actions, including:
a Activate/suspend updates on an attribute in another

object using CMxIndirect.Activate() or
CMxIndirect.Suspend().

b Activate/suspend updates on attribute in another
primitive.

Note In Runtime Shutdown method, if AdviseOnlyActiveEnabled is
enabled, the auto-generated code calls ActivateLocalAttribute()
for each attribute supporting AdviseOnlyActive.

AdviseOnlyActiveEnabled
Use this method or property to determine whether the object
has AdviseOnlyActive functionality enabled. If disabled, the
object must not call functions to use AdviseOnlyActive. The
AOT prevents functions such as SuspendLocalAttribute()
from being used if AdviseOnlyActive functionality is
disabled. This method or property determines if
AdviseOnlyActive functionality is enabled.
ArchestrA Object Toolkit Developer’s Guide

Providing Access to External Attributes (BindTo) 145
Other AOT Wrappers for AdviseOnlyActive
In addition to the wrappers indicated in the previous section,
the AOT adds the following wrapper function for
AdviseOnlyActive.

IO Utilities
Input and InputOutput utility primitives class wrappers
provide methods to SuspendUpdatesList() and
ActivateUpdatesList() that suspend and activate the input
polling for the utility primitive.

Triggering an Alarm at RunTime
Set the Boolean attribute representing the alarm to True to
trigger the alarm. Set the attribute to False to clear the
alarm condition.
Example:
myCondition = true;

Note The Boolean attribute must have an alarm extension added
to it in the Object Designer.

Providing Access to External Attributes
(BindTo)

The BindTo method of RuntimeBase provides a simplified
method for accessing attributes in other objects at run time
using CMxIndirect. For more information, see CMxIndirect
on page 147.

You can use BindTo to:

• Read the value, time, and quality of an attribute or
property.

• Set the value and time of an attribute. Quality cannot be
set.

The Value, Quality, Datatype, Length, and Time of the
external attribute can be accessed by the properties:
myIndirect.Value

myIndirect.DataQualityOfLastRead

myIndirect.Value.GetDataType

myIndirect.Value.Length

myIndirect.TimeStampOfLastRead
ArchestrA Object Toolkit Developer’s Guide

146 Appendix A Programming Techniques
Like value, time can be set across object boundaries. You can
access time without having to access value, but you must do
this by binding to the Time property directly.
Example:
myIndirect = RuntimeBase.BindTo(“obj.attr.time”, “”);

myIndirect.Value = DateTime.Now();
myTime = myIndirect.Value; // where myTime is a

System.DateTime variable

You can set both time and value together in one call:
myIndirect.Set(x, myTime);

Value and time can be set together as a pair.
Example:
private CMxIndirect myIndirect = null;

.

.

.

myIndirect = BindTo("MyTestObject.Attribute1", "",
true);

if (myIndirect != null)

{

 myIndirect.Set(180, DateTime.Now()); // sets V,
T in one call

}

The developer can get both Time and Value together in one
call:
if (myindirect.StatusOfLastRead.success == -1 &&

myindirect.StatusOfLastRead.Category ==
MxStatusCategory.MxCategoryOk)

{
myIndirect.Get(out x, out myTime, out myQuality);

}

After the BindTo operation, check the status before accessing
the value as shown in the previous example.

Note Declaring the CMxIndirect in the Runtime Declarations
Section makes the indirect available to all methods in the
Runtime, that is, to Startup and Execute.
ArchestrA Object Toolkit Developer’s Guide

Associating an ArchestrA Editor Control with an Attribute in Code 147
CMxIndirect
Used for referencing external attributes. For more
information, see Providing Access to External Attributes
(BindTo) on page 145.
public class CMxIndirect
{

public CMxIndirect(string _fullRefString, string
_context, IMxSupervisoryConnection _superConn,
RuntimeBase _rb, int _refHandle, short _statusId, int
_statusIndex);

public MxStatus CallBackStatus { get; }
public string Context { get; }
public short DataQuality { get; }
public string FullReferenceString { get; }
public bool IsGood { get; }
public int RefHandle { get; }
public MxStatus Status { get; }
public short StatusId { get; }
public int StatusIndex { get; }
public CMxValue Value { get; set; }
public CMxTime Time { get; set; }
public void Set { CMxValue value, CMxTime time };
public void Get { out CMxValue value, out CMxTime
time, out short quality };

}

Associating an ArchestrA Editor Control with
an Attribute in Code

Normally, ArchestrA editor controls are statically configured
to point to a single attribute to be configured on the editor
tab.

However, on occassion, and especially with virtual
primitives, it is useful to dynamically bind the editor control
to a particular attribute by setting the Attribute property of
the control.

For example, with a text box control, the following shows how
to set the attribute name in code:
aaTextBox1.Attribute = "myAttribute1";
ArchestrA Object Toolkit Developer’s Guide

148 Appendix A Programming Techniques
Referencing Attributes Using GetValue and
SetValue

The AOT enables the use of SetValue and GetValue to
reference the following types of attributes:

• Child primitive attributes

• Dynamic attributes

• Virtual primitive attributes

You can reference these attributes using SetValue and
GetValue with a relative string reference. The string
reference is relative to the primitive that contains the code,
and can be prefixed with the following modifiers:

• “me”

• “myparent”

• “myobject”

Note The prefix “me” is implied when no prefix is provided.

The GetValue and SetValue methods use the primitive
external name and attribute external name as shown in the
following example:
GetValue(PrimitiveExternalName.AttributeExternalName)

Examples included in this section are based on the following
hierarchy:
ArchestrA Object Toolkit Developer’s Guide

Associating an ArchestrA Editor Control with an Attribute in Code 149
Local References
To reference any local attributes, use the attribute name
with no prefixes or scope.

Using the me prefix explicitly sets the reference to local and
can be used to make it clear what type of reference is
required.

Either of the following statements in Child2 gets the value of
AOTObjectx1.Child2.Attribute1:
GetValue("Attribute1");

GetValue("me.Attribute1");

Referencing Down (child)
To reference attributes of a child primitive, prefix the
reference string with the name of the child primitives.

The following statement in Child2 gets the value of
AOTObjectx1.Child2.Child4.Attribute1:
GetValue("Child4.Attribute1");

The following statement in AOTobjectx1 gets the value of
AOTObjectx1.Child2.Child4.Attribute1:
GetValue("Child2.Child4.Attribute1");

Referencing Up (parent)
To reference attributes of a parent primitive use the
myparent prefix.

The following statement in Child2 gets the value of
AOTObjectx1.Attribute1:
GetValue("myparent.Attribute1");

The following statement in Child4 gets the value of
AOTObjectx1.Child2.Attribute1
GetValue("myparent.Attribute1");

The myparent prefix cannot be used more than once in a
reference. To reference attributes of objects or primitives
more than one level higher, you must use myobject to locate
the reference to the top of the hierarchy and then work
relative to that location.
ArchestrA Object Toolkit Developer’s Guide

150 Appendix A Programming Techniques
The following statement in Child4 gets the value of
AOTObjectx1.Attribute1:
GetValue("myobject.Attribute1");

The following statement in Child4 gets the value of
AOTObjectx1.Child1.Child3.Attribute1:
GetValue("myobject.Child1.Child3.Attribute1");

Array Usage
// Increment the 3rd element of an array
FloatArray1[3]++;

// Increment all the elements of an array
for (short counter = 1; counter <= FloatArray2.Length;

counter++)

{
FloatArray2[counter]++;

}

The External Build Process
The build process is made up of many stages. In general,
these stages all occur as a single event.

Sometimes you may want to execute only part of the build
process or to add additional events in the middle of the
process. To support this, you can start a solution build from
the command line as well as repackage the object with the
Packager application.

Note The project must be built before you execute the Packager,
because the Packager requires the aaDEF file and associated
assemblies create by the build.

Command Line Recompile Object
Perform these processes from a command prompt with the
Visual Studio Environment variables loaded.
Build Process - Recompile (debug version)
C:\>devenv "C:\ Projects\AOTObject88\AOTObject88.sln"

/build Debug

Build Process - Recompile (release version)
C:\>devenv "C:\ Projects\AOTObject88\AOTObject88.sln"

/build Release
ArchestrA Object Toolkit Developer’s Guide

Advanced Techniques 151
Command Line Repackage Object
The AOT includes a utility called Packager.

The Packager packages the object using the files created by
the build, that is, it packages the aaDEF files and assemblies
created by the build. This allows a build process to repackage
the aaPDF after the object is rebuilt using the command line
build.

You can start the Packager as a Windows Form application
or execute it from the command line using the following
switches:

/q - command line mode, no Form.

/f <filename> - The name of a text file containing information
needed by DesignServer to repackage the Object.

The file is automatically generated in the Output directory
when the AOT builds the object using the name
DesignServerInfo.txt. It contains the name of the root aaDEF
file and all of the paths to the core object dlls as relative
paths, that is, the project is portable.
Example
C:\Program Files\ArchestrA\Toolkits\AOT\Bin>packager /q

/f "C:\
Projects\AOTObject90\Output\designserverinfo.txt" /a
"C:\Utility Dlls\"

Note This feature allows you to modify the aaDEF file and
repackage the Object.

Advanced Techniques
Use these techniques to configure an object or primitive
completely in code using C# attributes. Using the integrated
Object Desiger causes these C# attributes declarations to be
automatically added to the code.
ArchestrA Object Toolkit Developer’s Guide

152 Appendix A Programming Techniques
Configuring an ArchestrA Attribute in Code
You can add ArchestrA attributes to the object. They can be
used locally in code as C# variables.

The ArchestrA attributes are declared in the object project as
C# variables using a CMx Data Type.

When the object is parsed, properties are automatically
added to the Runtime and Configtime class for each
ArchestrA attribute defined in the Object class. Parsing
occurs while:

• Refreshing the AOT Object Design View

• Opening the AOT Object Designer

• Saving an object in the AOT Object Designer

• Executing build or code validation

The attribute properties allow you to access ArchestrA
attributes as though they were strongly typed C# values.

When you reference the ArchestrA attribute in code, the
property provides a C# typed wrapper to the attribute using
SetValue and GetValue access. The wrapper provides access
to Quality, Time, Data Type, and Array Length.

The following table lists the data types and associated C#
conversions.

ArchestrA Data Type C# Data Type

Boolean bool

Integer int

Float float

Double double

Time DateTime

Elapsed Time TimeSpan

String string

Big String string

Attribute Reference string

Custom Enumeration string array

DataType ArchestrA.Core.MxDataType

Custom Structure ArchestrA.Core.MxCustomStruct

MxStatus ArchestrA.Core.MxStatus
ArchestrA Object Toolkit Developer’s Guide

Advanced Techniques 153
Note There is no direct conversion from an internationalized
string to a C# type. The internationalized string can be
represented as an internationalized string structure (string value,
locale) or by setting the locale for the attribute, which then
allows you to reference the attribute as a C# string.

The variable declaration can be decorated with C# attributes
to enable the configuration of the following attribute
properties (excluding special data types):

• External Name

• Category

• Security

• Calculated Quality and Time

• Frequently Accessed

• Alarm Extension

• History Extension

Note The special data types of CMxInternalDumpLoadData and
CMxInternalFailoverData are created and maintained by the
toolkit. These data types are not intended for general use. These
ArchestrA attributes store data for recreating dynamic attributes
and child primitive instances on dump/load and failover.

Variant CMxValue

InternalDumpLoadData ArchestrA.Core.MxCustomStruct
(special)

InternalFailoverData ArchestrA.Core.MxCustomStruct
(special)

ArchestrA Data Type C# Data Type
ArchestrA Object Toolkit Developer’s Guide

154 Appendix A Programming Techniques
Specifying the ArchestrA Attribute Array Length
You can set and get the array length of an attribute array
(static) at config time or run time using the following syntax:
Syntax
AttributeName.Length = n;

n = AttributeName.Length;

Parameters

AttributeName
Represents the array attribute name.

n
Represents an integer value.

Remarks
You can set the array length of a dynamic attribute array at
config time or run time using one of the following Get and Set
methods:
n = GetNumElements("AttributeName");

n = GetNumElements(AttributeID, PrimitiveID);
SetNumElements("AttributeName", n);

SetNumElements(AttributeID, PrimitiveID, n);

Where, AttributeName is the array attribute name and n is
an integer value.

You can apply the GetNumElements and SetNumElements
methods to attributes. However, when you rename an
attribute using the Object Designer, the attribute name
referenced by these methods is not updated.

Referencing Attributes from the Editor of the
Object

To reference attributes directly from the Editor Project of the
object, you must implement the GetData() and SetData()
methods provided by the framework.

In the examples, Attribute1 is a float array with four
elements, Attribute2 represents is a float.
Attribute Get Example:
//Get an Attribute value
float MyData2 =

(float)Convert.ToDecimal(GetData("Attribute2"));

Attribute Set Example:
//Set an Attribute value
SetData("Attribute2", 9.0);
ArchestrA Object Toolkit Developer’s Guide

Advanced Techniques 155
Array Attribute Get Example:
//Get a single value of an Array Attribute

float MyData =
(float)Convert.ToDecimal(GetData("Attribute1[1]"));

//Get an Array Attribute

object[] MyArrayValues = new object[4];

MyArrayValues = (object[])GetData("Attribute1");

Array Attribute Set Example
//Set an Array Attribute using a locally declared array

object[] MyArrayValues = new object[4];

MyArrayValues[0] = 1.0;

MyArrayValues[1] = 1.1;

MyArrayValues[2] = 1.2;

MyArrayValues[3] = 1.3;
SetData("Attribute1", MyArrayValues);

Note The array index is 1-based. There are no errors or warnings
to indicate that a zero value has been passed to the array index
from the editor of the object.

Local Attribute Wrappers
Based on the attribute category, AOT adds an Attribute
property to the Configtime class or the Runtime class for
each attribute declared in the Object class. You can use the
local attribute wrapper to access attributes using the
attributes name attribute_internalname.

The following code example represents an auto-generated
Attribute property added to the Configtime or Runtime class
for an attribute that supports read and write. In the example,
the Set statement would be excluded if the attribute were
read-only.
private CMxBoolean Attribute1

{

 get { return InternalReferenceOnly.Attribute1; }

 set { InternalReferenceOnly.Attribute1.Set(value);
}

}

The get property provides access to the attribute wrapper
and allows you to access the features of the wrapper, such as
quality and security.
ArchestrA Object Toolkit Developer’s Guide

156 Appendix A Programming Techniques
The set property is limited to setting the value. This is how
the property is used when the attribute is on the left side of
an assignment operator, for example, Attribute1 = 10. You
can assign values using this short method. It provides type
checking and automatic type conversion of the value.

The property does not provide any other set access to the
wrapper.

The following table shows the relationship between the
attribute category and the attribute properties Get and Set
added to the Configtime and Runtime classes.

Attribute Category
Configtime
Class Runtime Class

PackageOnly Get and Set - -

PackageOnly_Lockable Get and Set - -

Constant Get Only Get Only

Writeable_C_Lockable Get and Set Get Only

Writeable_UC Get and Set Get and Set

Writeable_UC_Lockable Get and Set Get and Set

Writeable_USC Get and Set Get and Set

Writeable_USC_Lockable Get and Set Get and Set

Calculated - - Get and Set

Calculated_Retentive - - Get and Set

Writeable_S - - Get and Set

Writeable_U - - Get and Set

Writeable_US - - Get and Set

SystemInternal Unsupported Unsupported

SystemSetsOnly Unsupported Unsupported

SystemWriteable Unsupported Unsupported
ArchestrA Object Toolkit Developer’s Guide

157
Appendix B

Development Best Practices

When developing your object, you should follow certain
guidelines to ensure correct functionality and to avoid
common pitfalls. See the following sections for guidelines and
tips on developing config time code, run time code, and the
custom object editor.

General Guidelines
Use the following general guidelines when developing your
object.

Naming Conventions
Use attribute and primitive names that are consistent within
your object and with other objects in the ArchestrA
environment. This makes it easier for operators and system
engineers to browse the ArchestrA object namespace.
ArchestrA Object Toolkit Developer’s Guide

158 Appendix B Development Best Practices
Naming Restrictions
• The following characters are invalid in ArchestrA names:

(space) . + - * / \ = () ` ~ ! % ^ & @ [] { } | : ; " , < > ?

• Non-English (“localized”) characters are supported in the
external names of attributes, objects and primitives, but
not in their internal names.

• You can use periods to create a logical naming hierarchy
for attributes and primitives (see Creating a Logical
Attribute Hierarchy on page 161). The maximum length
of each identifier between periods is 32 characters. The
maximum length of the entire name including all
identifiers is 329 characters for attributes and 255
characters for primitives.

ArchestrA Naming Standards and Abbreviations
The following table lists a set of standards for naming the
attributes and primitives of ArchestrA objects. While you
may not be able to apply it universally, you should follow it
whenever possible to promote consistency across ArchestrA
objects.

Instead of Use Comment

acknowledge Ack

acknowledged Acked

Address Addr

Alarm Alarm Don’t abbreviate.

Attribute attr

Automatic auto

Average avg

Cascade casc

command cmd OK to spell out “commandable” and
“commanded.”

configuration config OK to spell out “configure” or
“configured.”

connection connection Don’t abbreviate.

Control ctrl

controller ctrlr

Count cnt
ArchestrA Object Toolkit Developer’s Guide

General Guidelines 159
dataaccess DA

description desc

destination dest

deviation dev

Different diff

Directory dir

dynamicdataexchange DDE

engineeringunits EngUnits

Enum enumerationset

EU EngUnits Use “EngUnits”

evaluation eval

External external Don’t abbreviate.

GloballyUniqueID GUID All uppercase

High hi

Identifier id

Interval period Don’t use “interval” to specify a time
between cyclic events. Use “period”
instead.

Low lo

Manual man

maximum max

message msg

Minimum min

mxreference reference

Number cnt “Cnt” is short for “count.” You can use
“Number” if it refers to an index, not a
count. For example,
“TelephoneNumber” is OK because it
specifies a literal number, not a count of
telephones.

Object object Don’t abbreviate.

Output OP Abbreviation only used for PID
controller

Instead of Use Comment
ArchestrA Object Toolkit Developer’s Guide

160 Appendix B Development Best Practices
Additional Naming Guidelines
• When a name contains multiple words, begin each

word with a capital letter. For example, “Average
Page Faults” becomes “PageFaultsAvg.” When one of the
words itself is an acronym (e.g. “CPU”), still capitalize the
word following the acronym. For example, “CPU Load”
becomes “CPULoad,” not “CPUload.”

• Place adjectives after the noun. This causes objects of
interest (typically, the noun) to be grouped together in an
alphabetical list. For example, use “FlowAvg,”
“FlowMax,” and “FlowMin” instead of “AvgFlow,”
“MaxFlow,” and “MinFlow.”

• Use plural names for attributes that are arrays.

• Avoid unnecessary adjectives when the noun itself is
understood. For example, for an attribute that indicates
the CPU load, don’t use “CPULoadCurrent” or the
abbreviated “CPULoadCur” when “CPULoad” is enough.

password password Don’t abbreviate.

processvalue PV

Put set Use “set” instead of “put.”

Queue queue Don’t abbreviate.

randomaccessmemory RAM

rateofchange ROC

Received rcvd

reference reference Don’t abbreviate.

Server server For attribute names, don’t abbreviate.
For file names, OK to abbreviate to
“svr.”

Setpoint SP Abbreviation only used for PID
controller

Solicit solicit Don’t abbreviate.

Statistics stats

userdefinedattribute UDA

Value value Don’t abbreviate.

Instead of Use Comment
ArchestrA Object Toolkit Developer’s Guide

General Guidelines 161
Creating a Logical Attribute Hierarchy
An object’s primitives naturally create a hierarchical
namespace of attributes. Every attribute has a Hierarchical
Name that includes the external name of the primitive that
contains it. Without care, this namespace may expose the
underlying primitive structure of the object to end users,
which is usually undesirable from a useability standpoint.

You can use two strategies to address this issue: unnamed
primitives, and periods in attribute names.

Using “Unnamed” Primitives
When appropriate, primitives can be “unnamed,” that is,
their external name is empty. This causes all of the
primitive’s attributes to appear to belong to the primitive’s
container (either the parent primitive or the object itself).

Using Periods in Attribute Names
By using a period in an attribute name, you can create a
hierarchy within the object namespace that is independent of
the object’s primitive structure.

This is recommended when an attribute is related to a
contained primitive. In these situations, the name of the
attribute should always be the same as the contained
primitive’s name, or extend the contained primitive’s name
using a period.

For example, if your object includes an alarm primitive
named “AlarmHiHi,” you could create an object attribute
named “AlarmHiHi.Condition” that sets the condition for the
alarm. This allows the end user to refer to the alarm-related
attributes in a consistent, intuitive way.
ArchestrA Object Toolkit Developer’s Guide

162 Appendix B Development Best Practices
Working with the Logger
Use the Logger only for tracing trapped software errors or
diagnostics, and only use it sparingly in production objects.
Do not use it to provide information that is intended for
operators. Operators don’t typically look at the Logger
information, but rely on alarm and quality information
instead.

If you use the Logger to trace diagnostic information, make
sure that the logging does not continue indefinitely (e. g. on
every Application Engine scan). Otherwise, performance
issues occur.

If you use the Logger to provide debugging information
during development, either remove the logging calls before
releasing the object to production, or change them so that
logging only occurs when a custom log flag is set.

For more information on the Logger APIs, see the ArchestrA
Object Toolkit Reference Guide.

Raising Data Change Events
Wonderware Application Server supports generating
Application Data Change events to report significant or
unexpected data value changes to the alarm and event
sub-system. To generate a Data Change event, use the
SendEvent method of the object’s run time component.

These events are intended for data changes that occur during
the execute method of the object. They can be used to record
data changes in event history. However, do not use them for
data changes initiated by a run time user (“user sets”). This
causes duplication, because these data changes are already
logged by the ArchestrA infrastructure.

If you implement these events, you may want to provide a
configuration option to enable or disable them. Users may
not always want them reported, especially in the case of
“noisy” data.

Changing or Enforcing the Length of an Array
ArchestrA array lengths are dynamic. Run time or config
time clients can change the length of an array by writing a
new set of values to the array. The array length can also be
changed at any time by the object itself. To enforce a fixed
array length, check incoming values by using a set handler.
ArchestrA Object Toolkit Developer’s Guide

Guidelines for Config Time Code Development 163
Guidelines for Config Time Code
Development

Use the following guidelines for developing good config time
code.

Ensuring Galaxy Dump/Load Support
Make sure that your object can be processed by the IDE’s
Galaxy Dump/Load feature without generating warnings.
This features allows users of your object to dump object
instances to a CSV file, modify their configuration, and then
subsequently reload them. To ensure that this process works
smoothly, you must follow certain rules:

• Keep all validation rules in the config time code. Do
not rely on the custom editor code to maintain the
integrity of the object (e. g. keeping two attributes
consistent with each other). The Galaxy Load feature
does not use the editor code when importing objects. It
only calls the config time code’s OnValidate method.
Therefore, any validation rules in the editor code are
ignored during a Galaxy Load operation.

• Set handlers must quietly accept a new value equal
to the current value. An object should not reject a set
to an attribute when the value being set is the same as
the previous value, even if the object’s configuration does
not currently allow that attribute to be changed. Coding
this way prevents "noise" when Galaxy Load is run.

• Avoid "write-only" attributes that modify the
object’s namespace. An example of this is to have a set
handler add, remove, or rename a primitive whose name
was passed in as the value of a “write-only” attribute. At
first, this appears to be a sensible way for an editor to
pass a parameter to a config time method. However, if
that information is not subsequently exposed as a
readable attribute, there is not enough exposed
information in a dumped CSV file to recreate the object
from its configurable attributes when it is loaded.

Instead, you could store the names of the desired
primitives in an attribute containing an array of strings.
This array can have an associated set handler that
maintains the number of primitives and their names. In
this case, the Galaxy Load feature can load the object
successfully, because the exposed array contains all the
information required for the config time logic to recreate
the primitives.
ArchestrA Object Toolkit Developer’s Guide

164 Appendix B Development Best Practices
Determining the Configuration Status
Every ArchestrA object has an associated configuration
status: Good, Bad, or Warning. This status is based on the
individual statuses reported by the primitives within the
object. To set the status, use the OnValidate config time
event.

The object status reported in the ArchestrA IDE is based on
the worst status reported by any primitive within the object.

• Only set the status to Bad to prevent an object from
being deployed. In general, you should design an object so
that it can be deployed successfully with minimal
configuration, and only set an object’s status to Bad if
deploying it in its current configuration would be
impossible or dangerous.

• Use Warning status to mark an object as having a
potentially incorrect, but still deployable configuration.
For example, an object that still uses its default settings.

Changing an Attribute’s Data Type at Config
Time

Sometimes you may need to change an attribute’s data type
at configuration time. Normally, you will only do this for an
attribute that you defined as a Variant (unspecified data
type) in the Object Designer.

To change the attribute’s data type, modify the attribute’s
data type property. For more information, see the ArchestrA
Object Toolkit Reference Guide. For example, set the
attribute’s data type property to a value of MxDouble to
indicate that the attribute’s type is Double.

After changing the data type using the methods of the
CMxVariant wrapper, the value is automatically initialized
with the default value for that data type. If you change the
data type using a Set call, you must initialize the new value
manually.
ArchestrA Object Toolkit Developer’s Guide

Guidelines for Run Time Code Development 165
Guidelines for Run Time Code Development
Use the following guidelines for developing good run time
code.

Returning Warnings During Deployment
During deployment, objects can return a warning to the
ArchestrA IDE user if the target environment is inconsistent
with the object’s configuration. The object continues to run
despite the warning.

Returning warnings will rarely be necessary for
ApplicationObjects, but if you want to do so, use the
AddWarningMessage method. For more information, see the
corresponding information in the ArchestrA Object Toolkit
Reference Guide.

Avoiding Application Engine "Overscans"
The Application Engine requires that runtime object method
calls be nonblocking and relatively short in duration (on the
order of 100 microseconds). You can create threads for slow
or potentially blocking activities that would violate these
requirements. However, make sure to terminate all threads
when the object is shut down.

OnScan/OffScan Behavior
You can define custom actions that are executed when your
object goes OffScan. At a minimum, you should set the
quality of any attributes that have the CalculatedQuality
option enabled to Bad. When the object goes OnScan again,
set the quality of these attributes back to Good.
ArchestrA Object Toolkit Developer’s Guide

166 Appendix B Development Best Practices
Dealing with Quality
Every attribute has an associated OPC-compliant data
quality value that is a 16-bit word. The high-order byte is
vendor-specific. In an ArchestrA environment, it is reserved
for future use and currently always set to zero. The low-order
byte specifies the OPC quality. It has three possible major
quality states: Good, Uncertain, and Bad.

The ArchestrA environment additionally treats one substate
of the OPC “Bad” state as the special quality of “Initializing.”
Intializing quality is Bad quality with the Initializing bit set.

• If the quality of an attribute’s value is Good, the
associated value can be trusted and used. However, the
value could still be out of range or invalid (e. g. NaN).
Your object must check for these conditions separately.

• If the quality is Uncertain, the associated value can be
used, but there is some doubt about the integrity of the
value. For example, this could be the case when manually
overriding an attribute that is normally calculated
automatically. When using an input with Uncertain
quality, do it with care and mark the resulting
(calculated) attribute as Uncertain also.

• If the quality is Bad, there are a number of possible
reasons. These include:

• The object that contains the attribute set its quality
to Bad because insufficient or bad data was available.

• The infrastructure returns Bad quality for an
attribute when the attribute cannot be accessed
within Message Exchange. For example, the target
attribute does not exist or communication is faulty.

• A field device may not be connected or accessible,
resulting in Bad inputs that propagate through the
system.

• Initializing quality is a form of Bad quality that
requires special attention. It is temporary and only
occurs while an object is initialized. It lasts until the
object receives its first input data value. The quality then
goes to Good, Bad (non-Initializing) or Uncertain.
ArchestrA Object Toolkit Developer’s Guide

Guidelines for Run Time Code Development 167
Before you use data values in calculations and logic, always
check their quality. For example, it does not make sense to
calculate the average of two values if one or both values have
Bad quality, since Bad quality indicates that the value is not
to be used or trusted. Instead, in this case, you should skip
the calculation of the average and set the resulting attribute
to Bad quality itself.

The ArchestrA infrastructure does not automatically enforce
a specific value (such as IEEE NaN) when quality is Bad, or a
specific quality (such as Bad) when a value is NaN. Your
object must check for these conditions before using any
values in logic or calculations. For example, a float value
read from a field device may have a value of NaN but Good
quality. In that case, the object must be aware that the value
may be unusable for a calculation. Conversely, a value read
from a UDA attribute may be 4.3 but Bad quality. Again, the
object must inspect the quality first, realize it is Bad, and
take appropriate action.

Best Practices for Dealing with Quality
Best practices for dealing with quality include:

• If an attribute’s value is set by the object’s run time logic,
enable the Supports Calculated Quality and Calculated
Time option for that attribute in the Object Designer.

• For static attributes (i. e. attributes that you didn’t create
programmatically), you can use the auto-generated
wrapper to access the attribute’s quality. For example:

Attribute1.Quality = DataQuality.DataQualityGood;

• Set such attributes to Bad quality when the object goes
OffScan. Set them to Initializing quality when the object
goes OnScan.

• Do not use an input value with Bad (including
Initializing) quality in a calculation. Instead, set the
result quality Bad or Initializing (if input was
Initializing) and leave the value at the last value. (For a
float or double result, consider setting the result to NaN.)

• Do not use a NaN (float or double) input in a calculation.
Instead, set the result to Bad quality and leave the result
value at the last value, or set it to NaN if it is a float or
double.
ArchestrA Object Toolkit Developer’s Guide

168 Appendix B Development Best Practices
• If an illegal combination of input values exists, set the
resulting quality to Bad.

• Optionally, provide an option to report a “bad value”
alarm when a result value has Bad quality. Do not report
a “bad value” alarm when a value has Initializing.
Otherwise, transient alarms occur when the object goes
OnScan.

• Do not trigger any other alarms when the quality of an
attribute goes Bad. For example, do not trigger a PV
change-of-state alarm when the PV goes to some default
state after its quality goes Bad. Instead, always use a
separate alarm for bad value reporting.

• Inputs with Uncertain quality can be used with care. Set
the result to Uncertain quality also to indicate its
questionable status.

• Do not generate Logger messages when setting an
attribute to Bad quality in the cases outlined above.

• Do not attempt to change the quality of an input, output,
or input/output by using its wrapper. This is not
supported and may result in unexpected I/O values being
written.

Dealing with Timestamps
Observe the following guidelines when dealing with
calculated attributes:

• In most cases, it is appropriate to enable the Supports
Calculated Quality and Calculated Time option for values
whose value is calculated at run time.

• For attributes that are updated based on the value of an
input or input/output, set the time of the attribute to the
input value's time. This ensures that timestamps are
propagated properly.

• When setting the value of a calculated attribute that is
not connected to an input, it is usually best practice to set
the time to the current time. For attributes that have the
Supports Calculated Quality and Calculated Time option
enabled, the system automatically does this when you set
the value.

• When setting the value of an attribute based on the value
from another object, make sure to set the time of the
attribute to the time from the CMxIndirect value. This
ensures that timestamps are propagated properly.
ArchestrA Object Toolkit Developer’s Guide

Guidelines for Run Time Code Development 169
Dealing with Outputs on Object Startup
When developing objects associated with field devices, such
as a PLC, there are two main scenarios for what happens
when the object starts executing at run time:

• In the more common case, the object mirrors the PLC’s
data. In this scenario, when starting or resuming run
time execution, the object must initialize its own state to
match the PLC data. The object only writes data to the
PLC when an operator, script etc. requests such output.
It must not automatically write any data to the PLC
when it is started or shut down, set OnScan/OffScan,
deployed/undeployed, etc. This should be the default
scenario.

• Rarely, the inverse may be necessary, and the PLC
should mirror the object’s data. In this scenario, when the
object starts or resumes run time execution, it writes to
the PLC to force the PLC to match the object’s data. For
example, when resuming execution after a failure, the
object might use checkpoint data to restore the state
before the failure. This scenario is much less common
since the PLC generally is in control upon restarts.

In keeping with these scenarios, the utility primitives that do
outputs (Output and InputOutput primitives) never do an
output unless the object itself requests it. The object is in
complete control of when outputs occur. Therefore, if you
want to implement the second scenario, you must implement
custom code that performs the outputs to initialize the field
device.

Note You can check the ESTARTUPCONTEXT input parameter to
the Startup run time event handler to see why the object is
starting up (deployment, etc.).
ArchestrA Object Toolkit Developer’s Guide

170 Appendix B Development Best Practices
Dealing with the Quarantine State
When an unhandled software error is detected in a primitive,
the object is placed in a quarantine state indicating a bug in
the primitive code. As a result, the primitive’s set handlers,
Execute method, and other methods are no longer called. The
only remaining calls that the primitive can receive are those
related to the shutdown or undeployment of its associated
object. However, you can still read the object’s attributes to
gather troubleshooting information about the object state at
the time of the failure, because this doesn’t involve calling
any methods.

When an object is quarantined, the hosting engine raises an
alarm that remains active until the object is undeployed.

Ensuring Failover Support for Run Time Dynamic
Attributes

Note the following guidelines for run time code when working
with failover/checkpointing support for dynamic attributes:

• Attribute information may become outdated if the
dynamic attribute is modified after it is created. To
ensure that attributes are re-created correctly after a
failover, call the UpdateDynamicAttributeData()
method immediately after changing an attribute’s
name, data type, category, security classification or
set handler flag at run time. For more information,
see the ArchestrA Object Toolkit Reference Guide.

• After you change the value of a dynamic attribute,
call the CheckpointDynamicAttributeData() method
either immediately or during the next scan cycle. This
ensures that the attribute’s values are kept current in
the failover environment. For more information, see
the ArchestrA Object Toolkit Reference Guide.

• To restore dynamic attributes and their values at run
time startup, call the RestoreDynamicAttributes()
method from the object’s Startup event handler. For
more information, see the ArchestrA Object Toolkit
Reference Guide. You can check the
ESTARTUPCONTEXT input parameter to the
Startup event handler to see why the object is
starting up (deployment, failover, etc.).
ArchestrA Object Toolkit Developer’s Guide

Guidelines for Custom Editor Development 171
Guidelines for Custom Editor Development
Use the following guidelines for developing good code for your
custom object editor.

Keeping Validation Rules out of the Editor Code
Do not rely on the custom editor code to maintain the
integrity of the object (e. g. keeping two attributes consistent
with each other). It should always be possible to create an
object using a standalone configuration utility which
configures the object’s attributes without any involvement by
the object’s custom editor. Therefore, don’t put validation
rules in the custom object editor code. Instead, put them in
the OnValidate config time event that is provided for this
purpose.

Creating a Complete Editor
Make sure that your custom object editor allows the user to
edit every non-hidden configurable attribute of your object.
Remember that you may even have to add non-configurable
attributes to the editor, because their security classification
might still be editable.
ArchestrA Object Toolkit Developer’s Guide

172 Appendix B Development Best Practices
ArchestrA Object Toolkit Developer’s Guide

173
Appendix C

Sample Projects

The ArchestrA Object Toolkit comes with two sample
ApplicationObjects:

• Monitor object

• WatchDog object

By default, the projects for these objects are installed in the
C:\Program Files\Wonderware\Toolkits\ArchestrA
Object\Samples folder. You can examine these objects to
learn more about the C# code generated by the ArchestrA
Object Toolkit. This appendix gives a short overview of what
these objects do and what their structure looks like.

Note On a 64-bit operating system, projects for these objects are
installed in C:\Program Files (x86)\Wonderware\Toolkits\ArchestrA
Object\Samples.

The Monitor Object
The Monitor object is a very simple ApplicationObject that
reads an external input value and calculates its average. It
also allows the user to output a new value that is below a
configurable limit. It has no custom config time code and no
alarm or history settings.
ArchestrA Object Toolkit Developer’s Guide

174 Appendix C Sample Projects
Object Structure
The Monitor object uses the following primitives:

• InputOutput primitive to read and write the external
value; external name: PVInputOutput

The Monitor object has the following custom attributes:

Custom Object Editor
The custom editor of the Monitor object has only one custom
tab with controls to configure the following attributes:

• PVHiLimit

• PVInputOutput.Reference

• PVInputOutput.SeparateFeedbackConfigured

• PVInputOutput.ReferenceSecondary

Run Time Code
The Monitor object has the following custom run time code:

• SetScanState event:

• When going OnScan, set the quality of calculated
attributes to Initializing.

• When going OffScan, set the quality of calculated
attributes to Bad.

Name Type Category Description Additional Settings

PV Float Writeable
_US

Process value Calculated Quality,
Frequently Accessed,
Run Time Set
Handler

PVHiLimit Float Writeable
_USC

Limit value for
PV output

PVInputAvg Double Calculated
Retentive

Average value Calculated Quality

ResetInputAvg Boolean Writeable
_US

Resets the
average value

Run Time Set
Handler
ArchestrA Object Toolkit Developer’s Guide

The WatchDog Object 175
• Execute event:

• Get the new input value and write it to the PV
attribute.

• Set the PV attribute’s quality to the quality of the
new input value.

• Calculate the new average value and write it to the
PVInputAvg attribute.

• GetStatusDesc event: Return messages for custom
error codes.

• Set handler for PV attribute: Check that new value is
less than PVHiLimit.

• Set handler for ResetInputAvg: Reset the average
calculation.

The WatchDog Object
The WatchDog object demonstrates basic input/output,
alarming, and historization. It also shows how to use virtual
primitives. The object:

• Monitors whether an input bit has changed.

• Calculates the time since the bit last changed.

• Raises an alarm if this time exceeds a timeout limit.

• Historizes this time.

• Provides optional statistics via a virtual primitive:
average and maximum time since last change, time of
last timeout, total number of timeouts.

Object Structure
The WatchDog object uses the following primitives:

• Input primitive to read the external bit that should be
monitored; external name: MonitoredBit

• Alarm primitive

• History primitive

• Custom virtual local primitive to calculate statistics;
external name: Stats
ArchestrA Object Toolkit Developer’s Guide

176 Appendix C Sample Projects
The WatchDog object has the following custom attributes:

The Stats virtual primitive has the following custom
attributes:

Name Type Category Description
Additional
Settings

TimeSinceChange Elapsed
Time

Calculated Time since the
MonitoredBit
value last
changed state

Historizable

Timeout.Limit Elapsed
Time

Writeable_U
SC_Lockable

Limit value for
timeout alarm

Frequently
Accessed, Run
Time and Config
Time Set
Handlers

Timeout Boolean Calculated Set when
timeout has
occurred

Alarmable

Stats.Enable Boolean PackageOnly
_Lockable

Enable/disable
Stats virtual
primitive

Config Time Set
Handler

Name Type Category Description
Additional
Settings

Stats.DelayAverage Elapsed
Time

Calculated Average time
since last
change

Stats.DelayMax Elapsed
Time

Calculated Maximum time
since last
change

Stats.TimeoutCnt Integer Calculated Timeout count Historizable

Stats.LastTimeout Time Calculated Time of last
timeout

Stats.Reset Boolean Writeable_U Reset statistics Run Time Set
Handler
ArchestrA Object Toolkit Developer’s Guide

The WatchDog Object 177
Custom Object Editor
The custom editor of the WatchDog object has two custom
tabs with controls to configure the following:

• General tab:

• Input bit (MonitoredBit.InputSource)
• Enable statistics (Stats.Enable)
• Enable history and alarms for attributes

• Advanced tab:

• History and alarm settings for attributes

Config Time Code
The WatchDog object has the following custom config time
code:

• Set handler for Stats.Enable attribute:
Enable/disable the Stats virtual primitive.

• Set handler for Timeout.Alarmed attribute:
Enable/disable the timeout alarm primitive.

• Set handler for Timeout.Limit attribute: Check that
the new value is positive.

• Set handler for TimeSinceChanged.Historized
attribute: Enable/disable the history primitive for the
TimeSinceChanged attribute.

Object Run Time Code
The WatchDog object has the following custom run time code:

• Startup event: Initialize the time of last change.

• Execute event:

• Get the new input value.
• Calculate the time since the last change and write it

to the TimeSinceChanged attribute.
• If the time exceeds the timeout limit, raise an alarm

by setting the Timeout.Condition attribute to true.
• GetStatusDesc event: Return messages for custom

error codes.

• Set handler for Timeout.Limit attribute: Check that
the new value is positive.
ArchestrA Object Toolkit Developer’s Guide

178 Appendix C Sample Projects
Stats Primitive Run Time Code
The Stats virtual primitive has the following custom run
time code:

• Execute event: Calculate statistics (average/maximum
time since last change, timeout count, last timeout time)
and write them to the appropriate attributes.

• Set handler for Reset attribute: Reset all statistics
attributes.
ArchestrA Object Toolkit Developer’s Guide

179
Appendix D

ArchestrA Data Types

Objects that you create using the ArchestrA Object Toolkit
can have attributes of any standard data type that is
supported in the ArchestrA environment. This appendix
describes the available data types and provides some notes
on their recommended use.

List of ArchestrA Data Types
The ArchestrA environment supports the following data
types. The defaults are used at startup time or when there is
no data available. For notes on using each type correctly, see
Using Data Types Correctly on page 185.

For additional information on the operations supported by
each data type, see the class documentation in the ArchestrA
Object Toolkit Reference Guide.

Data Type Valid Values Notes

Boolean True, False
(default: False)

Integer -2147483648 to
2147483647, signed
(default: 0)

Float 3.40282 E+38 to
-3.40282 E+38,
signed (default:
NaN)

32-bit IEEE single-precision floating
point, used when 6-7 significant digits
are needed. Smallest representable
absolute value is 1.175 E-38.
ArchestrA Object Toolkit Developer’s Guide

180 Appendix D ArchestrA Data Types
Double 1.79769 E+308 to
-1.79769 E+308,
signed (default:
NaN)

64-bit IEEE double-precision floating
point, used when 15-16 significant
digits are needed. Smallest
representable absolute value is 2.23
E-308.

String 0 to 1024
characters, default:
empty string

Variable-length Unicode string, size: 4
+ 2*n bytes (n = number of characters)

Time Microsoft
FILETIME values
(default: “zero
time”)

64-bit FILETIME value in UTC
(Coordinated Universal Time).
Represents the number of
100-millisecond ticks since January 1,
1601, 00:00:00 (“zero time”).

Elapsed Time Number of 100-ms
ticks, signed
(default: 0)

Stored as a 64-bit FILETIME
structure. For example, -1 corresponds
to a duration of “-00:00:00.0000001”.

Attribute Reference Valid reference
strings (default:
empty string and
null handle)

Standard structure containing a
reference string and MxHandle (bound
or unbound). A string of "---" results in
a null handle, and no warning is
generated when the object is validated
(i. e. when the user saves the object
configuration). A string of "---.---"
results in a null handle, but a warning
is generated on validation.

MxStatus Default: Success Standard structure containing access
status information for a Message
Exchange call.

Data Type Enumeration, see
notes (default:
MxNoData)

Data type of an attribute. Valid
enumeration values are: MxNoData,
MxBoolean, MxInteger, MxFloat,
MxDouble, MxString, MxTime,
MxElapsedTime, MxReference,
MxStatus, MxDataType,
MxSecurityClassification, MxQuality,
MxCustomEnum, MxCustomStruct,
MxInternationalizedString and
MxBigString.

Custom
Enumeration

Default: ordinal=1,
String=String1

Enumerations start at the value 1.
Zero is not a valid ordinal value for an
enumeration.

Data Type Valid Values Notes
ArchestrA Object Toolkit Developer’s Guide

Coercion Rules for ArchestrA Data Types 181
Coercion Rules for ArchestrA Data Types
In some cases, ArchestrA data types can be “coerced” when
reading from or writing to an attribute. This means that the
client can specify a different data type than the attribute
actually has. The value is implicitly converted from the
specified data type to the data type required by the attribute.

For example, if an output configured for Boolean values
sends a value to an Integer attribute, the write operation
succeeds and the Boolean value is automatically converted to
a 0 or 1.

Coercion is only supported for some combinations of data
types. Trying to use coercion for unsupported combinations
results in an exception being thrown. Also, coercion generally
fails in case of an overflow, i. e. if the value is outside the
valid range of the target type.

The following tables list the supported combinations and
required value formats.

Coercion from Boolean Values

Custom Structure Default: GUID = 0,
length = 0.

Provides support for custom data in the
form of a GUID and byte array.

Internationalized
String

0 to 1024
characters, default:
empty string

A vector of strings and corresponding
locale IDs in the configuration
database. An MxString at runtime.

Big String 0 to 2147483647
characters, default:
empty string

Variable-length Unicode string, size: 4
+ 2*n bytes (n = number of characters)

Variant N/A Use this data type if the actual type of
an attribute cannot be determined in
advance.

Data Type Valid Values Notes

To ... Values / Notes

Integer False = 0, True = 1

Float,
Double

False = 0.0, True = 1.0

String, Big
String

“false” or “true”
ArchestrA Object Toolkit Developer’s Guide

182 Appendix D ArchestrA Data Types
Coercion from Integer Values

Coercion from Float or Double Values

To ... Values / Notes

Boolean 0 is False, non-zero is True.

Float,
Double

Value is preserved as is.

String, Big
String

Value is formatted as string.

Elapsed
Time

Interpreted as number of seconds.

Enumeration
types

Interpreted as ordinal value of
enumeration.

To ... Values / Notes

Boolean 0.0 is False, non-zero is True.

Double (from
Float)

Value is preserved as is.

Float (from
Double)

Values less than the minimum absolute
Float value of 1.17549E-38 result in a
value of Float 0.0, i. e. precision may be
lost.

Integer Value is rounded.

String, Big
String

Value is formatted as string.

Elapsed
Time

Value is interpreted as number of seconds
and rounded.

Enumeration
types

Interpreted as ordinal value of
enumeration.
ArchestrA Object Toolkit Developer’s Guide

Coercion Rules for ArchestrA Data Types 183
Coercion from String or Big String Values

Coercion from Time Values

To ... Values / Notes

Boolean “False” (any case) is False, “True“ (any
case) is True. All other values result in an
error.

Float,
Double

String must use the following format:
[whitespace][sign][digits][.digits]
[{d|D|e|E}][sign][digits]. Precision may
be lost.

A string of “NaN” (any case) results in an
IEEE NaN value.

Integer String must represent a valid signed or
unsigned Integer.

Elapsed
Time

String must use the following format:
[-[DDDDDD.] [HH:MM:]SS[.fffffff], where
DDDDDD is from 0 to 999999, HH is from
0 to 23, MM is from 0 to 59, SS is from 0 to
59, fffffff is fractional seconds (one through
seven digits). Parts in brackets are
optional.

Time String must use correct date/time syntax
for the current locale.

Data Type String must be a valid enumeration label
(“MxInteger”, “MxFloat”, etc.)

Custom
Enumeration

Interpreted as string part of enumeration.
No checking is done to determine if the
string is valid.

Reference String is set as reference string. No syntax
checking is done.

To ... Values / Notes

String, Big
String

Value is formatted according to the time
format specified by the current locale.
“Zero time” (1/1/1601, 00:00:00) results in
a blank string.
ArchestrA Object Toolkit Developer’s Guide

184 Appendix D ArchestrA Data Types
Coercion from Elapsed Time Values

Coercion from MxStatus Values

Coercion from Data Type Values

Coercion from Custom Enumeration Values

To ... Values / Notes

Integer Converted to number of seconds.

Float,
Double

Converted to number of seconds.

String, Big
String

String uses the following format:
[-]DDDDDD HH:MM:SS.fffffff

To ... Values / Notes

String, Big
String

String is generated from the Category and
Detail information of the MxStatus value.
If Category is OK, the string is empty.

To ... Values / Notes

Integer,
Float,
Double

Converted to ordinal value.

String, Big
String

Converted to type label, e. g. “MxInteger”

Elapsed
Time

Value is interpreted as number of seconds
and rounded.

Enumeration
types

Interpreted as ordinal value of
enumeration.

To ... Values / Notes

Integer,
Float,
Double

Converted to ordinal value.

String, Big
String

Converted to string value, e. g.
“MyEnum1”
ArchestrA Object Toolkit Developer’s Guide

Using Data Types Correctly 185
Coercion from Custom Structure Values

Using Data Types Correctly
Follow these guidelines on using specific data types.

Custom Enumeration vs. Integer
When defining an attribute that contains enumeration
values, use the Custom Enumeration data type, not Integer.

There are two criteria to distinguish an enumeration
attribute from a simple Integer attribute:

• In an enumeration, each possible value has a specific
meaning and represents a mode, state, etc.

• The values of an enumeration cannot be meaningfully
compared using comparison operators (>, <, <=, >=).

For each Custom Enumeration attribute, you must define a
second attribute containing an array of strings that defines
the possible enumeration values. Often, these values
shouldn’t be changed by the end user. If this is the case, set
the array attribute’s category to Constant so that users can’t
modify it.

Absolute and Elapsed Times
Use the Elapsed Time data type for storing an “elapsed
time,” that is, an amount of time. Avoid using Integer or
Float attributes with associated units of measure (like
seconds, minutes...) for this purpose. The only exception is
very short amounts of time expressed in milliseconds. These
can be stored as an Integer value.

Elapsed Time and Time attributes have a standard string
representation. The ArchestrA framework automatically
converts them to and from strings. They do not require an
associated engineering unit.

To ... Values / Notes

String, Big
String

Qualifier (GUID) is converted to string.
ArchestrA Object Toolkit Developer’s Guide

186 Appendix D ArchestrA Data Types
Internationalized String
Use the Internationalized String data type to define string
attributes that contain translations of a string for multiple
target languages. A good example would be attributes
containing an Engineering Unit name.

Use the Object Designer to define the default value for US
English.

At config time, you can use the methods of the
CMxInternationalizedString class to get and set the string
values for each locale. For more information, see the
ArchestrA Object Toolkit Reference Guide. For example:
//Get a string value using locale 1033

string temp = Attribute1.GetString(1033);

//Write a string value using locale 1033

Attribute1.SetString(1033, "MyString");

//Create a local copy of an Internationalized String
InternationalizedString[] temp =

Attribute1.GetInternationalizedStrings();

You can’t modify InternationalizedString attributes at run
time.

Big String
The Big String data type is designed to let you create
reasonably large strings beyond the 1,024 character
limitation of the String data type. Theoretically, it allows you
to create strings up to 2,147,483,647 characters in length. In
practice, available system memory and system performance
impose much lower limits. A reasonable practical maximum
for a single attribute of this type would be around 10 MB.

Attribute References
Use the Attribute Reference data type to store the fully
qualified name of an attribute. For example, the Input and
Output primitives use attributes of this type to hold the
input source or output destination.

You can read and write attribute references as strings.
However, they are different from strings. They also include
binding (location) information to improve the startup
performance of the messaging system. Therefore, don’t use
simple strings to store reference information.
ArchestrA Object Toolkit Developer’s Guide

Using Data Types Correctly 187
You can use two default values for an attribute reference to
indicate that the reference is unspecified:

• Use “---.---” to indicate that the user must specify a
reference. If the user doesn’t specify a reference, this
default value causes a warning when the object’s
configuration is validated.

• Use “---” to indicate that the reference is optional. This
default value does not cause a warning when the object’s
configuration is validated.

You will rarely need to create attributes of this data type. In
most cases, you will simply use the existing Input and
Output primitives for communicating with other objects.

Variant (Unspecified) Data Type
Use the Variant data type if the actual type of an attribute
cannot be determined in advance. You can then include
custom config time code that lets the user select the actual
data type while configuring the object. The data type can also
be modified when the object starts up at runtime.

An example of this is the Input primitive. This primitive gets
data from another object, regardless of its type, and stores
the value in its “Value” attribute. The data type of the value
attribute therefore depends on the type of data that the input
primitive is being used to retrieve.

In certain cases, it may be helpful to configure and persist
the datatype itself (Boolean, Float, String, etc.) as an
attribute. To do this, there is a special data type called “Data
Type.” For example, the Input and Output primitives include
an attribute of this type to configure the desired type of their
value attribute.

Arrays
You can configure attributes of any data type as arrays.
When defining your object in the Object Designer, you can
specify the initial number of elements and the initial value of
each element.

The size of an array can be changed at config time or run
time. If you want to fix the size of an array, you must create
config time and run time set handlers that ensure that the
size of the array is not changed.
ArchestrA Object Toolkit Developer’s Guide

188 Appendix D ArchestrA Data Types
ArchestrA Object Toolkit Developer’s Guide

189
Appendix E

ArchestrA Attribute Categories

An attribute’s category determines which namespaces an
attribute appears in, whether the attribute can be written to,
and what type of client (users, scripts, etc.) can write to it.

You should only allow as much access to an attribute as
necessary. For example:

• An attribute that is used only by config time logic to add
or remove Virtual Primitives should be given a category
that prevents it from becoming part of the run time
namespace (e. g. PackageOnly).

• An attribute that doesn’t make sense to configure in an
editor should be given a category (e. g. Calculated) that
prevents it from becoming part of the config time
namespace (and the custom object editor).

• An attribute that needs to be configured and deployed but
is not allowed to be modified at runtime should be given a
category that prevents users or other objects from writing
to it (e. g. Writeable_C_Lockable).

Some attribute categories allow an attribute to be locked.
This means that IDE users can lock the attribute in a
template to protect its configured value from being changed
in derived instances or templates. The value of a locked
attribute cannot be modified, not even internally by the
object’s code.

In general, you should make attributes lockable whenever
possible. Lockable attributes allow users to enforce
standards and can simplify system maintenance. Locking
data also helps minimize the size of a system’s configuration
database, which improves the speed of configuration tasks.
ArchestrA Object Toolkit Developer’s Guide

190 Appendix E ArchestrA Attribute Categories
Note An exception is raised if an object’s logic attempts to
modify a locked attribute. Therefore, before modifying a lockable
attribute in your code, check whether it is locked.

The following table describes each attribute category.

Category Name Description

PackageOnly Only exists at config time. Not deployed.

PackageOnly_Lockable Only exists at config time. Not deployed. Can be
locked.

Calculated Only exists at run time. Not externally writeable by
users or other objects. Run time changes are not
persisted to disk by the AppEngine.

Calculated_Retentive Only exists at run time. Not externally writeable by
users or other objects. Run time changes are persisted
to disk by the AppEngine.

Constant Defined by an object developer. Never changes. Exists
at config time and run time.

Writeable_U Exists at config time and run time, but only the
Security Classification is configurable. Only
externally writeable by users at run time.

Writeable_S Only exists at run time. Only externally writeable by
other objects at run time.

Writeable_US Exists at config time and run time, but only Security
Classification is configurable. Externally writeable by
users or other objects at run time.

Writeable_UC Exists at config time and run time. Only externally
writeable by users at run time.

Writeable_UC_Lockable Exists at config time and run time. Only externally
writeable by users at run time. Can be locked.

Writeable_USC Exists at config time and run time. Externally
writeable by users or other objects at run time.

Writeable_USC_Lockable Exists at config time and run time. Externally
writeable by users or other objects. Can be locked.

Writeable_C_Lockable Exists at config time and run time. Not writeable at
run time, even by the object itself. Can be locked.
ArchestrA Object Toolkit Developer’s Guide

 191
An attribute’s category also determines whether the
attribute supports various other options, such as a default
value or historization. See the following table for details.

1 Only non-array Boolean attributes can be alarmed. Only non-array attributes of
the following types can be historized: Double, Float, Integer, Boolean, String,
Custom Enumeration, and ElapsedTime,

Attribute Category Ca
n

se
t

se
cu

ri
ty

cl

as
si

fi
ca

ti
on

Ca
n

ha
ve

 c
on

fi
g

ti
m

e
se

t
ha

nd
le

r

Ca
n

ha
ve

 r
un

 t
im

e
se

t
ha

nd
le

r

Ca
n

be
 m

ar
ke

d
as

“F
re

qu
en

tl
y

A
cc

es
se

d”

Su
pp

or
ts

 “
Ca

lc
ul

at
ed

Q

ua
lit

y
an

d
Ti

m
e”

D
ef

au
lt

 v
al

ue
ca

n
be

 s
et

Su
pp

or
ts

 a
la

rm
s

an
d

hi
st

or
y1

Su
pp

or
ts

“A

dv
is

e
O

nl
y

A
ct

iv
e”

PackageOnly N Y N N N Y N N

PackageOnly_Locakable N Y N N N Y N N

Constant N N N Y N Y N N

Writeable_C_Lockable N Y N Y N Y N N

Writeable_UC Y Y Y Y Y Y Y Y

Writeable_UC_Lockable Y Y Y Y Y Y Y Y

Writeable_USC Y Y Y Y Y Y Y Y

Writeable_USC_Lockable Y Y Y Y Y Y Y Y

Calculated N N Y Y Y N Y Y

Calculated_Retentive N N Y Y Y N Y Y

Writeable_S N N Y Y Y N Y Y

Writeable_U Y N Y Y Y N Y Y

Writeable_US Y N Y Y Y N Y Y

SystemInternal N N Y N N Y N N

SystemSetsOnly N N Y N N N N N

SystemWriteable N N Y N Y Y Y Y
ArchestrA Object Toolkit Developer’s Guide

192 Appendix E ArchestrA Attribute Categories
ArchestrA Object Toolkit Developer’s Guide

193
Appendix F

ArchestrA Security Classifications

By default, new attributes are created with the “Free Access”
security classification, which means that any user can write
to them. You can restrict write access to an attribute by
selecting a different security classification. For example, you
can specify that the user must have a certain permission in
order to write to the attribute, or that the write operation
must be verified by a second user.

Important Security classifications are only effective if security is
enabled in the Galaxy.

The ArchestrA infrastructure supports the following security
classifications:

Security
Classification Description

FreeAccess Any user can write to these attributes.
Use this classification for attributes
that trigger safety or time critical tasks
that could be hampered by an untimely
logon request. For example, halting a
failing process.

Operate Users need Operate permissions to
write to these attributes.

Use this classification for attributes
that operators write to during normal
day-to-day operations.
ArchestrA Object Toolkit Developer’s Guide

194 Appendix F ArchestrA Security Classifications
SecuredWrite When writing to these attributes, users
must re-enter their logon information.
The new value is only written if the
logon information is correct and the
user has Operate permissions for the
attribute.

Use this classification for attributes
that operators write to during normal
day-to-day operations, but that require
an extra level of security.

VerifiedWrite When writing to these attributes, users
must re-enter their logon information,
and another user must confirm the
write by entering his or her logon
information as well. The new value is
only written if the two users are
different, the logon information for both
users is correct, and both users have
Operate permissions for the attribute.

Use this classification for attributes
that require very tight security and
whose values should not be changed
based on the decision of one person
alone.

Tune Users need Tune permissions to write
to these attributes.

Use this classification if an attribute is
a configuration parameter that might
be tuned by an engineer during normal
system operations. For example, an
alarm setpoint, PID sensitivity, etc.

Configure Users need Configure permissions to
write to these attributes, and the object
must be OffScan for the write to
succeed.

Use this classification if a change to the
attribute would be considered a
significant configuration change. For
example, the I/O addresses of an object.

ReadOnly These attributes can not be written to
at run time at all, regardless of the
user’s permissions.

Security
Classification Description
ArchestrA Object Toolkit Developer’s Guide

195
Index

A
aaDEF file

build output 118
importing 67

aaPDF file 109
build output 118

aaPRI file 70
build output 118

acknowledgement (alarms) 87
add-in, Visual Studio 19
Advise Only Active

at run time 143
enabling for attributes 101
enabling on object level 60

alarm 145
alarms 138

acknowledgement 87
alarm primitive attribute list 87
alarming attributes 83
category 84, 88
inhibition 88

ApplicationObjects
assemblies, configuring 64
building 117
creating (workflow) 17
debugging

current version 124
new version 125

defining 35
definition 14
description, configuring 36
design guidelines 25
dictionary 106

editing 107
retrieving strings 108
structure 107

differences to editing reusable
primitives 70

event handlers, configuring 37
execution group, configuring 63
external name 36
help, adding 65
IDE behavior, configuring 61
internal name 36
internationalization 105
migrating 119
minimum Application Server version,
configuring 60

names, configuring 36
shape 16, 67, 114
switching to reusable primitive
mode 69

toolset, configuring 62
validating 110
vendor name 36

ArchestrA attributes 152
ArchestrA UI controls
ArchestrA Object Toolkit Developer’s Guide

196 Index
adding to Visual Studio 48
changing reference 49

array attributes 132
array length 154
arrays

changing or enforcing length 162
defining 73
usage notes 187

assemblies
for ApplicationObjects, configuring 64
for local primitives, configuring 41

associated files 49
configuring manually 55
setting up rules 50

attaching debugger
to current version 124
to new version 125

Attribute Reference (data type)
usage notes 186

attribute wrappers 130
attributes

adding to an ApplicationObject or
primitive 72

Advise Only Active, enabling 101
alarming 83

alarm primitive attribute list 87
arrays, configuring 73
calculated quality and time 73
category

list 189
setting 73

config time set handlers, configuring 74
configuring 71
data type

changing at config time 164
coercion rules 181
list of data types 179
setting 73
usage guidelines 185

default attribute, creating 74
default value, setting 73
defining optional attributes via
primitives 45

definition 14
deleting 104
dynamic. See "dynamic attributes"
extensions, configuring 79
external name 72, 104
hidden attribute, creating 74

historizing 79
history primitive attribute list 81

internal name 72, 104
logical hierarchy, creating 161
naming conventions 157
naming restrictions 158
overriding in reusable primitives 43
planning usage 28
renaming 104
run time set handlers, configuring 76
security classification 73

list 193
set handlers

config time, configuring 74
run time, configuring 76

B
Big String (data type)

coercion rules 183
usage notes 186

Boolean (data type)
coercion rules 181

build modes 117
build options

Galaxy preferences 112
output preferences 111
search paths 113

build process 150
building an ApplicationObject or reusable
primitive 117

C
calculated quality

enabling for attribute 73
calculated time

best practices 168
enabling for attribute 73

calculations 138
category

of an alarm 84, 88
of an attribute

list 189
setting 73

checkpointing support for dynamic
attributes 170

child primitive 149
CLSIDs, configuring 64
coercion rules for data types 181
ArchestrA Object Toolkit Developer’s Guide

Index 197
Common primitive 15
config time coding 131
config time event handlers 37
config time set handlers, configuring for
attributes 74

Configtime (subfolder) 33
configuration status, determining 164
Custom Enumeration (data type)

coercion rules 184
usage notes 185

Custom Structure (data type)
coercion rules 185

D
Data Change events 162
data type

coercion rules 181
list 179
setting for attribute 73
usage guidelines 185

Data Type (data type)
coercion rules 184

debugging
current version of an object 124
new version of an object 125

default attribute, creating 74
Dependent File Manager 50
dependent files. See "associated files"
description

alarm 85, 88
setting for historized attribute 80, 81

design guidelines 25
determining configuration status 164
dictionary 106

editing 107
retrieving strings 108
structure 107

documentation conventions 11
Double (data type)

coercion rules 182
dump/load support

for dynamic attributes and virtual
primitives 58

guidelines for config time code 163
dynamic attribute 136, 143
dynamic attributes

checkpointing support 170

dump/load support 58
failover support 59, 170
set handler, configuring 78

E
editor

adding to object 47
guidelines 171

Editor (subfolder) 33
Elapsed Time (data type)

coercion rules 184
usage notes 185

engineering units
alarms 85, 87
historization 80, 81

error status 139
event handlers 37

config time 37
run time 39

events, raising 162
Execute (event handler) 39
execution group

ApplicationObjects 63
local primitives 41

extensions (attributes) 79
external attributes 145

referencing 147
external name

ApplicationObjects 36
attributes 72, 104
configuring in code 129
empty (for primitives) 161
general conventions 157
Input/Outputs 96
Inputs 90
Outputs 93
primitives 46
restrictions 158

F
failover support for dynamic
attributes 59, 170

feature overview 13
Float (data type)

coercion rules 182
forced storage period (history option) 80,
82
ArchestrA Object Toolkit Developer’s Guide

198 Index
G
Galaxy preferences, configuring 112
GetStatusDesc (event handler) 39
getting inputs 138

H
help, adding to ApplicationObject 65
hidden attributes, creating 74
historizing attributes 79

history primitive attribute list 81

I
IDE behavior, configuring 61
importing aaDEF files 67
inhibition (alarms) 88
Initialize (event handler) 39
input value 141
Input/Outputs

adding 95
external name 96
Input/Output primitive attributes 97
internal name 96
references 97

Inputs
adding 90
external name 90
Input primitive attributes 91
internal name 91
source reference 91

Integer (data type)
coercion rules 182

internal name
ApplicationObjects 36
attributes 72, 104
configuring in code 129
Input/Outputs 96
inputs 91
Outputs 93
primitives 46
restrictions 158

internationalization 105
Internationalized String (data type)

usage notes 186
interpolation type (history option) 80, 82
Intialize (event handler) 37

L
limit (alarm setting) 85, 87
limitations

complexity 27
performance 29

local attribute wrapper 155
local primitives

adding 40
assemblies, configuring 41
definition 15
execution group 41
limitations to complexity 27
subfolders in project 33

local reference 149
Logger

usage guidelines 162
Logger View 21

hiding/showing 21

M
major version 115
Migrate (event handler) 37
migrating ApplicationObjects 119
minimum Application Server version,
configuring 60

minor version 114
Mode list (build modes) 117
Monitor (sample object) 173
MxStatus (data type)

coercion rules 184

N
naming

conventions 157
restrictions 158

non-array attributes 132

O
Object Design View 20

hiding/showing 21
refreshing 21

Object Designer 22
opening 22
panes 23
synchronization with code 22

object dictionary 106
editing 107
retrieving strings 108
ArchestrA Object Toolkit Developer’s Guide

Index 199
structure 107
object editor (custom) 47
object help, adding 65
object shape 16, 67, 114
objects. See ApplicationObjects
Output (subfolder) 33
output preferences, configuring 111
output value 141
Outputs

adding 92
destination reference 94
external name 93
guidelines for object startup 169
internal name 93
Output primitive attributes 94

overriding attributes in reusable
primitives 43

overscans, avoiding 165

P
packaging 151
parent primitive 149
performance considerations 29
polling 143
PostCreate (event handler) 38
PreValidate (event handler) 38
primitives

"arrays" using virtual primitives 45
adding 40
Common 15
deleting 43
execution group, configuring 63
external name 46
Inputs and Outputs 89
internal name 46
limitations to complexity 27
local. See local primitives
naming considerations 46
naming conventions 157
naming restrictions 158
reusable. See reusable primitives
virtual. See virtual primitives

priority (alarm setting) 85, 89
programming techniques 127
projects

ArchestrA Object Toolkit 31
creating 32
deleting 34

editing 34
folder contents 33
moving 34
opening 33
overview 31
synchronization between code and
Object Designer 34

Visual Studio 31

Q
quality 140

calculated 73
quarantine state 170

R
rate deadband (history option) 80, 82
references

Input source 91
Input/Output 97
Output destination 94

relative string reference 148
renaming attributes 104
retrieving localized strings 108
reusable primitives

adding 41
creating (workflow) 17
defining 69
definition 15
design guidelines 25
differences to editing
ApplicationObjects 70

event handlers 43
execution group, configuring 63
overriding attributes 43
switching to ApplicationObject
mode 69

rollover value (history option) 80, 82
rules for associated files 50
run time coding 137
run time event handlers 39
run time set handlers, configuring for
attributes 76

Runtime (subfolder) 33

S
sample count (history option) 80, 82
sample objects

Monitor 173
ArchestrA Object Toolkit Developer’s Guide

200 Index
WatchDog 175
search paths, configuring 113
security classification

list 193
setting for attribute 73

set handler code 138
set handlers

config time, configuring for
attributes 74

for dynamic attributes, configuring 78
run time, configuring for attributes 76

SetScanState (event handler) 39
setting outputs 138
shape of an object 16, 67, 114
Shutdown (event handler) 39
solution folder 31

contents 33
Startup (event handler) 39
static attributes 136, 142
static primitives 136, 142
String (data type)

coercion rules 183
swinging door (history option) 80, 81
switching between object/primitive
mode 69

T
technical support, contacting 12
time

best practices 168
calculated 73

Time (data type)
coercion rules 183
usage notes 185

time stamp 140
toolbar 19
toolset

configuring for ApplicationObject 62
names, setting up 62

trend scale (history option) 80, 82

U
user interface

additions to Visual Studio 19
Logger view 21
Object Design View 20
Object Designer 22
overview 18
toolbar 19

V
Validate (event handler) 38
validating an object 110
validation 132
value deadband (history option) 80, 83
Variant (data type)

usage notes 187
vendor name 36
versioning 113
versions

major 115
minor 114
of an object, managing 113
specifying manually 117

virtual primitives
adding 133
and object design 26
definition 15
deleting 134
dump/load support 58
overview 43

Visual Studio
adding ArchestrA controls to toolbox 48
additions to interface 19
projects 31
references, configuring as associated
files 50

solution folder 31

W
WatchDog (sample object) 175
workflow 128

creating an ApplicationObject or
reusable primitive 17
ArchestrA Object Toolkit Developer’s Guide

	ArchestrA Object Toolkit Developer’s Guide
	Welcome
	Documentation Conventions
	Technical Support

	Overview and Concepts
	About the ArchestrA Object Toolkit
	About ApplicationObjects and Primitives
	Workflow: Creating an ApplicationObject or Reusable Primitive
	Tour of the User Interface
	Additions to the Visual Studio Interface
	ArchestrA Object Toolkit Toolbar
	Object Design View
	Logger View
	Object Designer Window
	Opening the Object Designer
	Object Designer Panes

	Object Design Considerations
	Guidelines for Designing the Structure of Control-Oriented Objects
	Limitations to the Complexity of Primitive Hierarchies

	Planning Attribute Usage
	Performance Considerations

	Working with Projects
	Creating a Project
	Opening an Existing Project
	Moving or Deleting Projects
	Editing Projects in Code or in the ArchestrA Object Toolkit Designer

	Defining an ApplicationObject
	Configuring the Object's Names and Description
	Configuring Event Handlers
	Configuring Config Time Event Handlers
	Configuring Run Time Event Handlers

	Working with Primitives
	Adding a Local Primitive
	Adding a Reusable Primitive
	Overriding and Locking Attributes of Reusable Primitives
	Deleting a Primitive
	Working with Virtual Primitives
	Defining "Optional" Attributes Using Virtual Primitives
	"Arrays" of Related Primitives
	Naming Considerations for Primitives

	Adding a Custom Object Editor
	Adding ArchestrA Controls to the Visual Studio Toolbox
	Changing the Attribute Reference of ArchestrA Controls

	Configuring Associated Files
	Setting up Rules for Dependent Files
	Setting up Rules for References that Don’t Currently Exist in Visual Studio
	Setting up Rules for References that Currently Exist in Visual Studio
	Deleting and Re-Ordering Rules
	Managing the Rules File for All Projects
	Configuring Associated Files Manually

	Configuring Additional Object Properties
	Configuring Dump/Load Support for Dynamic Attributes and Virtual Primitives
	Configuring Failover Support for Run Time Dynamic Attributes
	Enabling “Advise Only Active” Support for the Object
	Configuring the Object’s Minimum Application Server Version
	Configuring the Object’s IDE Behavior
	Setting the Object’s Toolset
	Configuring Toolset Names
	Configuring the Object’s Primitive Execution Order

	Associating Different Assemblies with an Object
	Adding Object Help
	Importing an .aaDEF File from a Previous Object Version

	Defining a Reusable Primitive
	Switching between Object/Primitive Mode
	Differences Between Editing Objects and Primitives

	Configuring Attributes
	Adding Attributes to an Object or Primitive
	Creating a Default Attribute
	Creating a “Hidden” Attribute

	Configuring Config Time Set Handlers
	Example: Configuring a Config Time Set Handler

	Configuring Run Time Set Handlers
	Example: Configuring a Run Time Set Handler

	Configuring Dynamic Attribute Set Handlers
	Example: Configuring a Set Handler for a Dynamic Attribute

	Configuring Attribute Extensions
	Historizing an Attribute
	Attributes of the History Primitive
	Making an Attribute Alarmable
	Example: Configuring a Value Alarm for an Attribute
	Attributes of the Alarm Primitive

	Adding Inputs and Outputs
	Adding an Input
	Attributes of the Input Primitive
	Adding an Output
	Attributes of the Output Primitive
	Adding an Input/Output
	Attributes of the Input/Output Primitive

	Configuring “Advise Only Active” Support for an Attribute
	Renaming or Deleting Attributes

	Internationalizing Objects
	About Internationalizing Objects
	Configuring the Object Dictionary
	Dictionary File Format and Structure
	Editing the Dictionary in Visual Studio

	Retrieving Localized Dictionary Strings

	Building and Versioning Objects
	Validating an Object
	Configuring Build Options
	Configuring Output Preferences
	Configuring Galaxy Preferences
	Configuring Additional Search Paths

	Managing an Object's Versions
	Building a New Minor Version of an Object
	Building a New Major Version of an Object
	Creating a New Build without Incrementing the Version Number
	Manually Specifying the Version Number

	Building an Object
	Migrating Objects
	Example: Migrating a Previous Object Version
	Additional Guidelines for Migrating Objects

	Debugging Objects
	Attaching the Debugger to the Processes Running the Current Object Version
	Attaching the Debugger during the Build Process

	Programming Techniques
	Programming Workflow
	Configuring Internal and External Names
	Providing Wrappers for Referencing ArchestrA Attributes
	Config Time Coding
	Config Time Set Handler
	Set Handler Code
	Performing Config Time Validation with the ConfigtimeValidate() Method
	Adding a Virtual Primitive at Config Time with AddPrimitive
	Removing a Virtual Primitive at Config Time with DeletePrimitive
	Accessing Data in Attributes at Config Time
	Accessing Data in Other Primitives at Config Time
	Adding and Deleting Dynamic Attributes at Config Time

	Run Time Coding
	Runtime SetHandler
	Set Handler Code
	SetInfo Structure Event Arguments
	Coding a RuntimeExecute() Method
	Returning an Error Status String at Run Time
	RuntimeGetStatusDesc Event
	Event Handler for Get Status Description
	Manipulating Data Quality at Run Time
	Manipulating the Timestamp at Run Time
	Getting Input (I/O) Values Using Utility Primitives at Run Time
	Setting Output (I/O) Values Using Utility Primitives at Run Time
	Accessing Data in Attributes at Run Time
	Accessing Data in Other Primitives at Run Time
	Adding and Deleting Dynamic Attributes at Run Time
	Supporting AdviseOnlyActive at Run Time
	AdviseOnlyActiveEnabled
	Other AOT Wrappers for AdviseOnlyActive
	IO Utilities
	Triggering an Alarm at RunTime

	Providing Access to External Attributes (BindTo)
	CMxIndirect

	Associating an ArchestrA Editor Control with an Attribute in Code
	Referencing Attributes Using GetValue and SetValue
	Local References
	Referencing Down (child)
	Referencing Up (parent)
	Array Usage

	The External Build Process
	Command Line Recompile Object
	Command Line Repackage Object

	Advanced Techniques
	Configuring an ArchestrA Attribute in Code
	Specifying the ArchestrA Attribute Array Length
	Referencing Attributes from the Editor of the Object
	Local Attribute Wrappers

	Development Best Practices
	General Guidelines
	Naming Conventions
	Naming Restrictions
	ArchestrA Naming Standards and Abbreviations
	Additional Naming Guidelines
	Creating a Logical Attribute Hierarchy
	Using “Unnamed” Primitives
	Using Periods in Attribute Names
	Working with the Logger
	Raising Data Change Events
	Changing or Enforcing the Length of an Array

	Guidelines for Config Time Code Development
	Ensuring Galaxy Dump/Load Support
	Determining the Configuration Status
	Changing an Attribute’s Data Type at Config Time

	Guidelines for Run Time Code Development
	Returning Warnings During Deployment
	Avoiding Application Engine "Overscans"
	OnScan/OffScan Behavior
	Dealing with Quality
	Best Practices for Dealing with Quality
	Dealing with Timestamps
	Dealing with Outputs on Object Startup
	Dealing with the Quarantine State
	Ensuring Failover Support for Run Time Dynamic Attributes

	Guidelines for Custom Editor Development
	Keeping Validation Rules out of the Editor Code
	Creating a Complete Editor

	Sample Projects
	The Monitor Object
	Object Structure
	Custom Object Editor
	Run Time Code

	The WatchDog Object
	Object Structure
	Custom Object Editor
	Config Time Code
	Object Run Time Code
	Stats Primitive Run Time Code

	ArchestrA Data Types
	List of ArchestrA Data Types
	Coercion Rules for ArchestrA Data Types
	Coercion from Boolean Values
	Coercion from Integer Values
	Coercion from Float or Double Values
	Coercion from String or Big String Values
	Coercion from Time Values
	Coercion from Elapsed Time Values
	Coercion from MxStatus Values
	Coercion from Data Type Values
	Coercion from Custom Enumeration Values
	Coercion from Custom Structure Values

	Using Data Types Correctly
	Custom Enumeration vs. Integer
	Absolute and Elapsed Times
	Internationalized String
	Big String
	Attribute References
	Variant (Unspecified) Data Type
	Arrays

	ArchestrA Attribute Categories
	ArchestrA Security Classifications
	Index

