SO Machine Basic 1.1

List of Supported PLC for the So machine Basic :

- Below PLC Models are supported in only Somachine basic.
- Different PLC models have a different property and communication protocols.

Somachine basic supported PLC Controller List

Sr. No	PLC Controller	Communication Protocol	Power Supply	DI	DO	Al
			Rating			
1	TM221C16R	1 Serial line ports	100-240 Vac	9	7 Relay	2
2	TM221C16T	1 Serial line ports	24 Vdc	9	7 Source	2
3	TM221C16U	1 Serial line ports	24 Vdc	9	7 Shink	2
4	TM221C24R	1 Serial line ports	100-240 Vac	14	10 Relay	2
5	TM221C24T	1 Serial line port	24 Vdc	14	10 Source	2
6	TM221C24U	1 Serial line port	24 Vdc	14	10 Shink	2
7	TM221C40R	1 Serial line port	100-240 Vac	24	16 Relay	2
8	TM221C40T	1 Serial line port	24 Vdc	24	16 Source	2
9	TM221C40U	1 Serial line port	24 Vdc	24	16 Shink	2
10	TM221CE16R	1 serial line & 1 Ethernet port	100-240 Vac	9	7 Relay	2
11	TM221CE16T	1 serial line & 1 Ethernet port	24 Vdc	9	7 Source	2
12	TM221CE16U	1 serial line & 1 Ethernet port	24 Vdc	9	7 Shink	2
13	TM221CE24R	1 serial line & 1 Ethernet port	100-240 Vac	14	10 Relay	2
14	TM221CE24T	1 serial line & 1 Ethernet port	24 Vdc	14	10 Source	2
15	TM221CE24U	1 serial line & 1 Ethernet port	24 Vdc	14	10 Shink	2
16	TM221CE40R	1 serial line & 1 Ethernet port	100-240 Vac	24	16 Relay	2
17	TM221CE40T	1 serial line & 1 Ethernet port	24 Vdc	24	16 Source	2
18	TM221CE40U	1 serial line & 1 Ethernet port	24 Vdc	24	16 Shink	2
19	TM221M16R/G	2 serial line port	24 Vdc	8	8 Relay	2
20	TM221M16T/G	2 serial line port	24 Vdc	8	8 Source	2
21	TM221M32TK	2 serial line port	24 Vdc	16	16 Source	2
22	TM221ME16R/G	1 serial line & 1 Ethernet port	24 Vdc	8	8 Relay	2
23	TM221ME16T/G	1 serial line & 1 Ethernet port	24 Vdc	8	8 Source	2
24	TM221ME32TK	1 serial line & 1 Ethernet port	24 Vdc	16	16 Source	2

New Project In Somachine

• Create new project as per attached image and select PLC version, which you have require in your project.

Somachine Basic New Project

Controller Selection in Somachine Basic

- See Image and select PLC as you have require, Simply Drag and Drop PLC controller from the right side (TM221 Controller)
- Below the TM221 controller selection block, you are choose your extended cards/Modules (like: Analog Modules, Digital Modules, RTD modules)
- As per image double click on Serial/Ethernet port.

Programming Section in Somachine Basic:

Double Click on Yellow indicated mark as per image (Programming)

Programming Section in Somachine Basic

- This section only for the development of the PLC Logic.
- You need to developed your Logic as you have require for the project.
- Create POU's on "Tasks" Tab for the development of the PLC Logic, On each POU have created multiple Rungs

Example:

- Here one input channel configure for the Motor running command.
- While %I0.0 getting from the Push button (Start) then PLC generated output %Q0.0 for the motor running.

Programming Example in Somachine Basic

- On left side you have got two Tab "Tasks and Tools".
- In the **Task tab** you have get a PLC POU's and their Rungs.
- In the Tools tab you have get a PLC controller tools,
 - 1. Error Messages
 - 2. Animation Tables
 - 3. Memory Objects
 - 4. System Objects
 - 5. IO Objects
 - 6. Networks Objects
 - 7. Software Objects
 - 8. PTO Objects
 - 9. Drive Objects
 - 10. Communication Objects
- Here in the Tools Tab you get a various tools of the PLC Controller

Somachine Basic – Logic Development Part

Programming Window is only for the development of Logic

Only Ladder and Instruction list option available for the development of the PLC Logic.

- You have two option are there for the PLC Logic development.
 - 1. Ladder and
 - 2. Instruction List

- As per attached image you can select LD/IL easily.
- Go to Programming section and add rung.
- See image one input channel configured in the LD and operate one Output.
- %IO.0 is Eternal channel of the PLC Input Card,
- %Q0.0 External Channel of the PLC Output Card.

Sample of the Input Channel and Output Channel

- As per attached image you can develop your Logic here.
- One more example attached in the image.

Sample of the Operational Block

• While **%M0 bit** actuated then **%MW0** value convert from **INT to Real** Value and Move result in **%MF0.**

Memory Addresses of the PLC:

• **TM221** Controller have supported %M, %MW, %MF, %MD memory addresses for the communication.

Sr. No.	INT / Word	Double INT / Word	BIT	FLOATING
1.	%MW	%MD	%M	%MF
2.	%KW	%KD		%KF

 As per attached Addresses Sheet you can able to transfer data from PLC to SCADA or HMI or Other.

PLC Memory Internal Addresses for the data Transfer:

%MW: Memory Word of the internal Address
 %M: Memory Bit of the internal Address
 %MD: Memory Double of the internal Address
 %MF: Memory Float of the internal Addresses

PLC Memory Constant Addresses:

%KW : Constant Word of the Controller Address
 %KD : Constant Double of the Controller Address
 %KF : Constant Float of the Controller Addresses

Constant Word only for the passing constant values in the particular Address

• PLC Address Mapping require as per the standard format, as per their standard format you can transfer data values to the other devices.

Sr. No.	Memory Word	Modbus Addresses
1.	%MW0	40001
2.	%MW1	40002
3.	%MW2	40003
4.	%MW3	40004

- PLC Controller can be transmit the data on this standard format and you can show PLC values on MODSCAN.
- You have require to create a Excel file with the PLC Address Mapping as per PLC Logic.

PLC Operational Block:

- In this operational block you have write your operation,
- Like: Move statement, Conversion Statement
- In operation block example, One Memory Word value converted from the INT_TO_REAL and move in one Memory floating address.

Comparison Block:

- Comparison block used for the comparing both values and actuated bit on output coil.
- Here in this example %MW100 is less from %MW200 Then output coil generated.

Ladder Configuration Tools:

> Ladder logic development tools

READ_VAR Block Configuration:

- > Read_Var Function block use for the data capturing from the **Modbus RTU / Modbus Ethernet** protocol.
- If you have some slave devices like: **Weighing indicator, Kettles,...Etc.** for the data reading then you have to require Read_Var function for the capturing data.
- This data have get on Holding Register, Input Register, Input Status and Input Coil Format.

READ VAR CONFIGURATION

- First you have select **Read_Var Function block** from the Ladder configuration Tools.
- As per attached image trigger to Execute bit of the Read Var function.
- Done bit indicate, Slave device respond or Not.
- Configure your parameter as per require in **Read_Var property.**
- Link: Serial or Ethernet Protocol
- Id: Slave ID
- ObjType: Holding Register, input Register, Input Status, Input Coil.
- First Obj : First object that you have to read data from the Slave device
- Quantity: Quantity of the read data from first object

SL1 (Serial Line) Configuration

- Click on **SL1 (Serial Line)** Configuration
- Then you have an option for the MODBUS, ASCII, TMH2GDB and Modbus Serial IO Scanner.
- Choose what you have configure in Serial Connection.

Modbus Serial line Configuration

- You can select as you have require and configure based on selection of communication.
- On all the option you have require to configure some basic options :
 - 1. Baud Rate
 - 2. Parity
 - 3. Data Bits
 - 4. Stop Bit
 - 5. Physical Medium

IO Scanner Configuration

• Select the **IO Scanner in Serial line** as per below attached image.

- Select Modbus Serial IOScanner
 In Protocol Settings.
- Change Serial line Settings as per requirements.

Serial Line Configuration

• Here, Standard settings are done,

Baud rate : 9600
 Parity : None
 Data bits : 8
 Stop Bit : 1

5. Physical Medium: RS-485

APPLY Changes.

Serial Line Setting

IO Scanner Configuration

 As per attached image you have get a one page for the Adding Slave devices in IO Scanner.

Modbus Serial IO Scanner

Slave Devices Added in Device Settings

- As per attached image simply click on Add button and give a slave ID of the Slave device.
- Simply add slave devices in IO Scanner with the particular slave ID and Apply changes.

 While you have not configure ETH or SL 1 that time you got a ERROR as per attached image.

READ_VAR Configuration

 After configuration of the ETH or SL 1 for the Slave device then READ_VAR configured completely.

READ_VAR Configuration

Here are a two option are available for the reading data in PLC.

- 1. Serial Communication
- 2. Ethernet Communication
- For **SL1 communication select SL 1** then go to the Configuration page and select **SL1 Serial.**
- This protocol through data will be captured from the Slave device.
- Make a cable for the Modbus Serial RS-485 or RS-232 and connect with controller.
- Connect Slave devices serially with controller and configure READ_VAR Function block as per connected slave devices.
- After Configuration of **READ_VAR Function Block**, Apply and download program.

MODBUS Ethernet Configuration:

- Here are a two option are available for the reading data in PLC.
 - 1. Serial Communication
 - 2. Ethernet Communication
- For the Ethernet connection you have require to select ETH 1.
- For **ETH 1 communication** select **ETH 1** then go to the configuration Page and select **ETH 1 Serial**.
- > This protocol through data will be captured from the Slave device.
- ➤ Connect RJ 45 pin Ethernet cable with the controller.
- Connect Slave devices on Ethernet based and data will be transfer using IP Address, Configure READ_VAR Function block as per connected slave devices.
- After Configuration of **READ_VAR Function Block**, Apply and download program.

- > Go to Configuration Page and select Modbus TCP.
- Configured IP Address of the slave devices.
- > This Added IP based, READ_VAR Function block configured and Captured data from the slave devices.

Modbus Slave devices connection

Added all the slave devices IP Addresses and configure in READ_VAR Function block.

Example:

Ethernet / RS-485 Communication

- 1. Drum Filling Machine
- 2. Kettle Weighing Indicator
- You can easily connect all the Slaves devices using RS-484 or Ethernet communication.

WRITE_VAR Configuration:

• WRITE_VAR function block configuration, Same as READ_VAR function block configuration.

WRITE_VAR Function Block Configuration

• While you have not configured Ethernet slave device's in configuration tab then you got a RED mark as per below attached image.

 Go to the configuration page and configure Ethernet device the after select ETH 1 on WRITE_VAR, RED indication easily remove and able to do apply on changes.

- Here on Ethernet
- Configuration one Ethernet Address on Ethernet configuration page.
- Now, Go to the READ_VAR Function block and select ETH 1.

Ethernet Configuration on configuration Page

WRITE_VAR Configuration

• See, here ETH 1 selected and also APPLY button enable for the save configuration.