
8/26/14

Wonderware
InTouch® HMI
Scripting and Logic
Guide

All rights reserved. No part of this documentation shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of Invensys Systems, Inc. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in the
preparation of this documentation, the publisher and the author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of the information
contained herein.

The information in this documentation is subject to change without notice and does not represent a
commitment on the part of Invensys Systems, Inc. The software described in this documentation is
furnished under a license or nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2010, 2014 by Invensys Systems, Inc. All rights reserved.

Invensys is a Schneider Electric company.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200

http://www.wonderware.com

For comments or suggestions about the product documentation, send an e-mail message to
ProductDocumentationComments@invensys.com.

All terms mentioned in this documentation that are known to be trademarks or service marks have been
appropriately capitalized. Invensys Systems, Inc. cannot attest to the accuracy of this information. Use of
a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.

Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT Analyst, Factelligence,
FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2, InBatch, InControl, IndustrialRAD,
IndustrialSQL Server, InTouch, MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, Wonderware Factelligence, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and affiliates. All other brands may
be trademarks of their respective owners.

http://www.wonderware.com

3

Contents

Welcome ..9
Documentation Conventions ... 9
Technical Support .. 9

Chapter 1 Introduction to Scripting 11
Basic Scripting Concepts ... 12
Types of Scripts .. 12
Editing and Creating Scripts ... 13
Advanced Scripting Concepts .. 14

OLE Objects ... 14
Scripting with ActiveX Controls ... 14

Chapter 2 Creating and Editing Scripts 15
Opening a Script for Editing ... 16
Saving or Discarding Changes to a Script 17
Copying, Cutting and Pasting Text ... 18
Finding and/or Replacing Text .. 18
Inserting Code Elements ... 18
Accessing Help for Script Functions ... 19
Validating Scripts for Correct Syntax ... 20
Printing Scripts .. 20
InTouch HMI Scripting and Logic Guide

4 Contents
Deleting Scripts .. 21

Chapter 3 Script Triggers ... 23
Types of Script Triggers ... 24
Using Multiple Triggers ... 24
Periodic Script Execution .. 25
Configuring Application Scripts .. 25

Limitations of Application Scripts ... 26
Configuring Window Scripts .. 27
Configuring Key Scripts ... 28
Configuring Condition Scripts ... 30
Configuring Data Change Scripts ... 33
Configuring Action Scripts .. 34
Configuring ActiveX Event Scripts ... 38
Pausing Script Execution at Run Time ... 40

$LogicRunning System Tag .. 41

Chapter 4 The Script Language................................... 43
Basic Syntax Rules ... 44

Subroutines ... 44
Statements ... 44
Indentation .. 44
Comments .. 44
Tag References .. 45
Literal Data Values ... 45
Value Expressions ... 45
Syntax Validation .. 45

Calling Standard Functions .. 46
Syntax for Calling Standard Functions 46
Passing Parameters to a Function ... 46

Calling Custom Functions (QuickFunctions) 47
Passing Parameters to a QuickFunction 48

Value Assignments and Operators .. 48
Supported Operators ... 48
Setting the Evaluation Order of Operators 56
Implicit Data Type Conversion .. 57
Examples for Expressions ... 57

Using Conditional Program Branching Structures 58
Simple Conditional Structure ... 59
Nested Conditional Structure ... 59
Invalid Scripting Example (Missing ENDIF) 60
InTouch HMI Scripting and Logic Guide

Contents5
Invalid Scripting Example (Incorrect Nesting) 60
Using Program Loops ... 61

Forcing the End of a Loop ... 62
Effect of Loops on Other Run-Time Processes 63
Time Limit for Loop Execution ... 63
Examples of Loops ... 63

Using Local Variables .. 64
Declaring a Local Variable ... 64
Naming Conflicts between Local Variables and Tags 65

Chapter 5 Custom Script Functions 67
About QuickFunctions ... 67
Configuring QuickFunctions ... 68
Calling QuickFunctions ... 69
Creating Asynchronous QuickFunctions 69

Limitations of Asynchronous QuickFunctions 70
Checking if any Asynchronous QuickFunctions

are Running .. 70
Stopping Asynchronous QuickFunctions from Running 71

Chapter 6 Built-In Functions....................................... 73
Forcing Updates in Animation Display Links 73
Mathematical Calculations .. 74

Rounding, Truncating, and Determining Sign 74
Using Trigonometric Functions .. 77
Returning the Value of Pi ... 80
Calculating Logarithms .. 80
Calculating the Square Root ... 82

String Operations ... 82
Returning Parts of Strings ... 83
Changing Case of Strings ... 85
Removing Spaces from Strings ... 86
Formatting Strings with Spaces ... 87
Converting Between Characters and ASCII Codes 87
Searching and Replacing Text in Strings 89
Returning Information about Strings .. 92
Comparing Strings .. 93

Converting Data Types .. 95
Text() Function .. 96
StringFromIntg() Function ... 97
StringFromReal() Function .. 97
InTouch HMI Scripting and Logic Guide

6 Contents
StringToIntg() Function .. 98
StringToReal() Function ... 99
DText() Function ... 100

Working with InTouch Windows at Run Time 101
Expose Window Name Property ... 101
Showing a List of Open Windows ... 103
Checking If a Window is Open, Closed, or Exists 103
Opening InTouch Windows ... 104
Moving and Resizing a Window ... 106
Hiding InTouch Windows ... 107
Changing the Color of a Window .. 108
Printing Windows at Run Time .. 109
Starting Tag Viewer .. 113

Working with Date and Time Information 113
Retrieving Numerical Date and Time Information 113
Retrieving String Date and Time Information 119
Converting Date and Time Information to Strings 121
Checking the Daylight Savings Time Status 124

Interacting with Other Applications ... 125
Starting a Windows Application .. 125
Retrieving the Application Title of a Running

Application .. 126
Checking If an Application is Running 126
Activating a Running Windows Application 127
Sending Simulated Key Strokes to an Application 128
Closing, Minimizing or Maximizing a Windows

Application .. 130
Executing Commands and Exchanging Data

using DDE ... 131
Working with Files ... 134

Managing Files .. 135
Reading and Writing CSV Data ... 139
Reading and Writing Text Data ... 141

Retrieving System-Related Information 143
Retrieving the Node Name of the Computer 143
Retrieving Disk Space Information .. 144
Retrieving Information on a File or Directory 145
Retrieving Information on the Windows Environment 146

Retrieving InTouch Related Information 147
Retrieving the Name of the InTouch Application

Directory .. 148
Retrieving the InTouch Version ... 148

Security-Related Scripting .. 149
InTouch HMI Scripting and Logic Guide

Contents7
Logging On and Off ... 149
Changing and Setting Password .. 150
Specifying and Configuring Users .. 150
Managing Security and Other Information 151

Miscellaneous Scripting ... 152
Playing Sound Files from an InTouch Application 152
Getting and Setting Properties of Wizards 153

Chapter 7 Scripting with OLE Objects 159
Creating, Validating, and Releasing OLE Objects 159

OLE_CreateObject() Function .. 160
OLE_IsObjectValid() Function ... 160
OLE_ReleaseObject() Function .. 161

Using OLE Object Properties and Methods 162
Accessing the Properties of an OLE Object 162
Calling Methods of an OLE Object ... 163

Assigning Multiple Pointers to the Same OLE Object 164
Troubleshooting OLE Errors ... 165

OLE_GetLastObjectError() Function 165
OLE_GetLastObjectErrorMessage() Function 165
OLE_ResetObjectError() Function ... 166
OLE_ShowMessageOnObjectError() Function 166
OLE_IncrementOnObjectError() Function 166

Things You Can Do with OLE ... 167
Produce Random Numbers ... 167
Create User Interface Dialog Boxes ... 167
Open Windows Date and Time Properties Panel 169
Read and Write to the Registry .. 170
Minimize Windows .. 170

Chapter 8 Scripting ActiveX Controls 171
Calling ActiveX Control Methods .. 171
Accessing ActiveX Control Properties from the

InTouch HMI ... 173
Configuring ActiveX Control Properties to Read and

Write Data ... 173
Creating and Re-using ActiveX Event Scripts 176

Creating ActiveX Event Scripts ... 176
Re-using ActiveX Event Scripts ... 177
Creating Self-Referencing ActiveX Event Scripts 178

Importing ActiveX Event Scripts .. 179
InTouch HMI Scripting and Logic Guide

8 Contents
Chapter 9 Troubleshooting QuickScripts 181
Logging Messages to the Log Viewer .. 181

LogMessage() Function ... 182
Viewing Log Viewer Messages .. 183

Index... 185
InTouch HMI Scripting and Logic Guide

9

Welcome

You can create scripts to add procedures to your InTouch human
machine interface (HMI) applications. You use scripts to add
capabilities and features to animations, alarms management, operator
interfaces and trend wizards.

You can view this document online or you can print it, in part or whole,
by using the print feature in Adobe Acrobat Reader.

Before you begin learning about scripting and logic, you must know
how to use Microsoft Windows, including navigating menus, moving
from application to application, and moving objects on the screen. If
you need help with these tasks, see the Microsoft online help.

Documentation Conventions
This documentation uses the following conventions:

Technical Support
Wonderware Technical Support offers a variety of support options to
answer any questions on Wonderware products and their
implementation.

Convention Used for

Initial Capitals Paths and file names.

Bold Menus, commands, dialog box names, and
dialog box options.

Monospace Code samples and display text.
InTouch HMI Scripting and Logic Guide

10 Welcome
Before you contact Technical Support, refer to the relevant section(s)
in this documentation for a possible solution to the problem. If you
need to contact technical support for help, have the following
information ready:

• The type and version of the operating system you are using.

• Details of how to recreate the problem.

• The exact wording of the error messages you saw.

• Any relevant output listing from the Log Viewer or any other
diagnostic applications.

• Details of what you did to try to solve the problem(s) and your
results.

• If known, the Wonderware Technical Support case number
assigned to your problem, if this is an ongoing problem.
InTouch HMI Scripting and Logic Guide

11
Chapter 1

Introduction to Scripting

You can use the InTouch scripting language, QuickScript, to build
more robust applications. There are seven types of scripts and many
built-in script functions available.

The seven types of scripts are defined by what causes them to execute.
For example, application scripts execute when an application starts,
stops, or continues running. Data change scripts execute when a
certain item of data changes. Window scripts execute when a window
opens, closes, or remains open.

The built-in script functions include mathematical functions,
trigonometric functions, string functions, and others. Using these
functions saves you time in developing your application.

InTouch scripts can include Object Linking and Embedding (OLE)
objects and ActiveX controls.

You can use conditional statements, loops, and local variables in the
scripting language to create complex effects in your application.
InTouch HMI Scripting and Logic Guide

12 Chapter 1 Introduction to Scripting
Basic Scripting Concepts
Before you start scripting, you should understand:

• A script is a set of instructions that direct an application to do
something.

• QuickScript is the InTouch HMI scripting language.

• A function is a script that can be called by another script. The
InTouch HMI comes with a set of predefined functions for your use.

• QuickFunctions are re-usable functions written in QuickScript
and stored in the QuickFunction library. To create a
QuickFunction, you simply create a QuickScript and name it. A
QuickFunction can be called by another script or from animation
link expressions.

Types of Scripts
In InTouch, scripts are categorized based on what causes the script to
execute. For example, you would create a “key script” if you want a
script to execute when the operator presses a certain key on the
keyboard.

After you have chosen the script type, you can then further define the
criteria, or conditions, that make the script execute. For example, you
might want the script to execute when the key is released, not when
the key is pressed.

The script types are:

• Application scripts execute either continuously while
WindowViewer is running or one time when WindowViewer is
started or shut down.

• Window scripts execute periodically when an InTouch window is
open or one time when an InTouch window is opened or closed.

• Key scripts execute one time or periodically when a certain key or
key combination is pressed or released.

• Condition scripts execute one time or periodically when a certain
condition is fulfilled or not fulfilled.

• Data change scripts execute one time when the value of a certain
tag or expression changes.

• Action scripts execute one time or periodically when an operator
clicks on an InTouch HMI graphic object.

• ActiveX event scripts execute one time when an ActiveX event
occurs, such clicking the ActiveX control.
InTouch HMI Scripting and Logic Guide

Editing and Creating Scripts13
Editing and Creating Scripts
Use the InTouch HMI Script Editor to create and edit scripts within
InTouch WindowMaker.

This example is for an application script. Each type of script has its
own version of the script dialog box, with options and selections that
are unique to that type of script.

The title bar of the editor identifies which type of script you are
working with. For information about types of scripts, see "Types of
Scripts" on page 12.

There are text, equivalency and mathematical operator buttons at the
bottom of the QuickScript editor that you can click to insert that
keyword, function, or symbol into your script at the cursor location.

The Condition box includes the available execution conditions for the
type of script you are writing.

The MEM OLE button in the lower right corner only appears if the
Manufacturing Engineering Module (MEM) is installed with the
InTouch HMI installation. Clicking this button allows you to script
with MEM.

Toolbars

Condition
definition

Script
window

Equivalency
and math
operator
buttons

Command
buttons

Built-in
script
function
buttons

area

MEM OLE
function
button
InTouch HMI Scripting and Logic Guide

14 Chapter 1 Introduction to Scripting
Advanced Scripting Concepts
Some advanced scripting capabilities allow you to achieve
sophisticated functions beyond those of the basic InTouch HMI.

OLE objects and ActiveX controls allow you to access your native
computer system functions and interact with other programs such as
the Manufacturing Engineering Module.

OLE Objects
In your custom scripts, you can call OLE objects. OLE objects allow
you to access your native computer system functions and to interact
with other programs such as the Wonderware Manufacturing
Engineering Module.

For example, using OLE, you can:

• Produce random numbers.

• Create user interface dialog boxes.

• Open the Windows date and time properties panel.

• Read and write to the registry.

• Minimize windows.

Scripting with ActiveX Controls
Several ActiveX controls are provided with the InTouch HMI in the
Wizards menu. Because the InTouch HMI is based on the Windows
operating environment, you can use nearly any ActiveX control with
the InTouch HMI.
InTouch HMI Scripting and Logic Guide

15
Chapter 2

Creating and Editing Scripts

The steps to create a new script vary according to the script type. In
general, you open the script editor, select a condition type, enter
statements, and then save the script.

For detailed information on creating scripts of each type, see the
following sections:

• "Configuring Application Scripts" on page 25.

• "Configuring Window Scripts" on page 27.

• "Configuring Key Scripts" on page 28.

• "Configuring Condition Scripts" on page 30.

• "Configuring Data Change Scripts" on page 32.

• "Configuring Action Scripts" on page 32.

• "Configuring ActiveX Event Scripts" on page 35.

See the following sections for basic editing operations, as well as some
advanced features that can save you time.

• "Opening a Script for Editing" on page 16.

• "Saving or Discarding Changes to a Script" on page 17.

• "Copying, Cutting and Pasting Text" on page 18.

• "Finding and/or Replacing Text" on page 18.

• "Inserting Code Elements" on page 19.

• "Accessing Help for Script Functions" on page 20.
InTouch HMI Scripting and Logic Guide

16 Chapter 2 Creating and Editing Scripts
Opening a Script for Editing
The steps to open an existing script vary slightly depending on the
script type.

To open an application script

1 Do either of the following:

• Using the Classic View, in the Scripts pane, double-click
Application.

• On the Special menu, point to Scripts, and then click
Application Scripts.

2 In the Condition Type list, click the type of script to edit.

To open a window script

1 Do any of the following:

• Using the Classic View, in the Windows pane, right-click the
window name, and then click Window Scripts.

• Using the Project View, expand Scripts, and then double-click
the script.

• Open the window that the script is associated with. On the
Special menu, point to Scripts, and then click Window Scripts.

• Open the window that the script is associated with. Right-click
on a blank area in the window, and then click Window Scripts.

2 In the Condition Type list, click the condition to cause the script to
run.

To open an ActiveX event script

 Do any of the following:

• Using the Classic View, in the Scripts pane, expand ActiveX
Event, and then double-click the script name.

• Using the Project View, expand Scripts, and then double-click
the script.

• Double-click the ActiveX control instance that the script is
associated with. Click the Events tab, and then double-click the
cell that contains the script name.

To open an action script

1 Open the window that contains the graphic element that the action
script is associated with.

2 Double-click the graphic element that the action script is
associated with.
InTouch HMI Scripting and Logic Guide

Saving or Discarding Changes to a Script17
3 In the Touch Pushbuttons area, click Action. The Script Editor
appears.

4 In the Condition Type list, click the action to cause the script to
run.

To open key, condition, or data change scripts

1 Do any of the following:

• Using the Classic View, in the Scripts pane, expand the script
category, and then double-click the script name.

• Using the Project View, expand Scripts, and then double-click
the script.

• On the Special menu, point to Scripts, and then click the
relevant script type. The Script Editor appears. Click the
Browse button, and click the script name.

2 If applicable, in the Condition Type list, click the condition to
cause the script to run.

Saving or Discarding Changes to a Script
While working in the Script Editor, or when finished, you can save
your script either manually or automatically. Or you can discard it
altogether.

The restore option is not available for window and application scripts.

Note: Saving and discarding changes always applies to all condition
types for a type of script, not just the condition type that is currently
visible.

To save changes and keep the script open

 On the Script menu, click Save.

To save changes and close the script

 Click OK.

To discard changes and keep the script open

 Click Restore.

To discard changes and close the script

 Click Cancel.
InTouch HMI Scripting and Logic Guide

18 Chapter 2 Creating and Editing Scripts
Copying, Cutting and Pasting Text
Copying, cutting and pasting text in the Script Editor works the same
way as in any other Windows application. Use either the standard
keyboard shortcuts Ctrl-C, Ctrl-X, and Ctrl-V, or the toolbar buttons.

Finding and/or Replacing Text
You can search and replace text in a script.

To find and/or replace text

 On the Edit menu, click Find. The Replace dialog box appears.

The options in this dialog box work the same way as in other Windows
applications, such as Notepad.

Inserting Code Elements
You can automatically insert various code elements into your script by
selecting them from lists. This saves you time and reduces the risk of
typing errors.

To insert a function into a script

1 On the Insert menu, point to Functions, and then click the name of
the function category. The respective Choose function dialog box
appears.

If you cannot see the function you are interested in, click Next
Page at the bottom of the list to go to the next page.

2 Click the function to use. The dialog box closes, and the function is
inserted into your script at the cursor location.

To insert a tagname into a script

1 On the Insert menu, click Tagname. The Select Tag dialog box
appears.

2 Click the tagname to use.

Alternatively, you can double-click a tagname to insert the tag and
dot field currently selected in the dot field list.

3 To include a dot field, click it in the Dot Field list.

4 Click OK. The Select Tag dialog box closes, and the tagname (with
dot field, if any) is inserted into your script at the cursor location.

For more information on using the Select Tag dialog box (including
setting up multiple tag sources), see "Selecting an InTouch Tag" in the

InTouch® HMI Visualization Guide.
InTouch HMI Scripting and Logic Guide

Accessing Help for Script Functions19
To insert a dot field into a script

1 Type the tagname and a period.

2 Double-click to the right of the period. The Choose field name
dialog box appears.

3 Click the dot field to use. The dialog box closes, and the dot field is
inserted into your script at the cursor location.

To insert a window name into a script

1 On the Insert menu, click Window. The Window Name to Insert
dialog box appears.

2 Click the window name to use. The dialog box closes, and the
window name is inserted into your script at the cursor location.

To insert an ActiveX method or property into a script

1 On the Insert menu, click ActiveX. The ActiveX Control Browser
dialog box appears.

2 In the Control Name list, click the ActiveX control instance whose
properties and methods you want to list.

3 In the Method / Property list, click the method or property.

4 Click OK. The dialog box closes, and the method or property
reference is inserted into your script at the cursor location.

To insert a keyword or operator into a script

 Click the relevant button at the bottom of the Script Editor. The
keyword or operator is inserted into your script at the cursor
location.

Accessing Help for Script Functions
If you are looking for help on a specific script function, you can access
it directly from the Script Editor.

To view help on a specific script function

1 In the bottom right corner of the Script Editor, click Help. A list of
functions appears.

2 If you cannot see the function you are interested in, click Next
Page at the bottom of the list to go to the next page.

3 Click the name of the required function. The corresponding Help
topic appears.
InTouch HMI Scripting and Logic Guide

20 Chapter 2 Creating and Editing Scripts
Validating Scripts for Correct Syntax
When you save a script, the Script Editor automatically checks it for
correct syntax. If an error occurs, a message with more information
appears. You must fix all syntax errors before you can save the script.
You can also start the validation manually while you are editing the
script.

To manually validate script syntax

 Click Validate.

Printing Scripts
You can print scripts individually from the Script Editor, or you can
print all scripts of a specific type using the print feature in
WindowMaker.

You can print scripts individually from the Script Editor, or you can
print all scripts of a specific type using the print feature in
WindowMaker.

To print an individual script

1 Open the script in the Script Editor.

2 Click Print in the toolbar. The script is printed to the Windows
default printer.

To print all scripts of a specific type

1 On the File menu in WindowMaker, click Print. The WindowMaker
Printout dialog box appears.

2 To print window scripts, do the following:

a Select Windows.

b Select the windows to print:

All prints the information for all windows in the application.

Selected prints only the information for specific windows. The
Windows to Print dialog box appears. Select the windows in
your application you want to print and click OK.

Batch prints only the information for windows specified in a
.csv file.

c Select Window Scripts to print the scripts associated with the
windows.

3 To print other types of scripts, select the appropriate check boxes.
To print all scripts, click All Scripts.

4 Click Next. The Select Output Destination dialog box appears.
InTouch HMI Scripting and Logic Guide

Deleting Scripts21
5 Do one of the following

• Click Send output to Printer.

• Click Send output to Text File.

6 Click Browse to select a printer or to find a file.

7 Click Print.

To print all scripts

1 Select All Scripts to print all scripts used in the application.
You can restrict printing to only selected types of scripts by
clearing the All Scripts check box. Then, select the check box for
each type of script that you want to print.

2 Click Next. The Select Output Destination dialog box appears.

3 Select the option to print the contents of the Tagname Dictionary
or send the output to a text or .html file.

4 Click Print.

Deleting Scripts
The steps to delete a script vary depending on the script type. See the
following sections:

• "Configuring Application Scripts" on page 25.

• "Configuring Window Scripts" on page 27.

• "Configuring Key Scripts" on page 28.

• "Configuring Condition Scripts" on page 30.

• "Configuring Data Change Scripts" on page 32.

• "Configuring Action Scripts" on page 32.

• "Configuring ActiveX Event Scripts" on page 35.
InTouch HMI Scripting and Logic Guide

22 Chapter 2 Creating and Editing Scripts
InTouch HMI Scripting and Logic Guide

23
Chapter 3

Script Triggers

All InTouch HMI scripts are executed by script triggers. Each script
type has one or more triggers to launch it.

In the Script Editor, you can select which script trigger you want to
use to execute your script. You select a script trigger based on when
and how a script is executed.

You can configure various triggers based on user actions, internal
states, and changes of tagname values. User actions include pressing
keys and clicking on graphic elements. Internal state triggers can
include starting WindowViewer.

Scripts are triggered by these kinds of actions:

• Starting and shutting down WindowViewer. See "Configuring
Application Scripts" on page 25.

• Opening and closing a window. See "Configuring Window Scripts"
on page 27.

• Pressing a key or key combination. See "Configuring Key Scripts"
on page 28.

• Fulfilling a certain condition, such as tagname or an expression
value. See "Configuring Condition Scripts" on page 30.

• Changing tagname values or tagname field values. See
"Configuring Data Change Scripts" on page 32.

• Clicking a graphic object. See "Configuring Action Scripts" on
page 32.

• Events that occur in an ActiveX control, such as clicking on the
control. See "Configuring ActiveX Event Scripts" on page 35.
InTouch HMI Scripting and Logic Guide

24 Chapter 3 Script Triggers
Also, you can pause script execution. By default, when WindowViewer
is started, logic is running and scripts are executed. You can pause
script execution at run time by halting logic. After pausing you can
resume script execution. For more information, see "Pausing Script
Execution at Run Time" on page 36.

Types of Script Triggers
In the InTouch HMI, scripts are divided into seven types. Each type of
script has one or more triggers you can select to launch a script.

• An application script has three triggers: on startup, on
shutdown, and while running. Each trigger can execute a different
script.

• A window script has three triggers: on show, on hide, and while
showing. Each trigger can execute a different script.

• A key script has three triggers: on key up, on key down, or while
down. Each trigger can execute a different script.

• A condition script has four triggers: on true, while true, on false,
and while false. Each trigger can execute a different script.

• A data change script executes when the value of a certain tag or
expression changes.

• An action script executes one time or periodically when an
operator clicks on an InTouch HMI graphic object.

• An ActiveX event script executes one time when a certain
ActiveX event occurs, such as a click on the ActiveX control.

Using Multiple Triggers
For most script types you can use multiple triggers and associate
different scripts with each trigger.

For example, you can configure an application script to execute one
script when WindowViewer is started, and another script periodically
while WindowViewer is running.

Select the trigger in the Condition Type list to view the existing script
for a trigger.
InTouch HMI Scripting and Logic Guide

Periodic Script Execution25
Periodic Script Execution
Scripts that execute periodically do not execute immediately after
triggering, but after the specified period for the first time.

For example, if you configure a key script to execute every 5000 ms
while a specific key is pressed, it executes 5 seconds after the key is
pressed and held down and then every 5 seconds afterwards.

Configuring Application Scripts
Application scripts are linked to the entire InTouch HMI application.
You can use application scripts to:

• Execute a script one time when WindowViewer is started.

• Execute a script periodically while WindowViewer is running.

• Execute a script one time when WindowViewer is shut down.

To configure an application script

1 Using the Classic View, in the Scripts pane, right-click on
Application and then click Open. The Application Script dialog box
appears.
InTouch HMI Scripting and Logic Guide

26 Chapter 3 Script Triggers
2 In the Condition Type list, click the condition for the script
execution:

• Click On Startup to configure a script to execute one time when
WindowViewer is started.

• Click While Running to configure a script to execute
periodically while WindowViewer is running.

• Click On Shutdown to configure a script to execute one time
when WindowViewer is shut down.

3 If you selected While Running in the previous step, type a time
interval between 1 and 360000 milliseconds in the Every box. The
time interval specifies how often the script is executed.

4 Type your script in the window.

5 Click OK.

To delete an application script

1 Using the Classic View, in the Scripts pane, right-click on
Application and then click Open. The Application Script dialog box
appears.

2 In the Condition Type list, click the condition for the script to
delete. The script appears in the main section of the Application
Script dialog box.

3 On the Edit menu, click Clear. The script from the main section
clears and the associated script is deleted.

Limitations of Application Scripts
Application scripts that are executed when WindowViewer starts or
shuts down have limitations on their interaction with other objects.

You cannot use On Startup application scripts to:

• Reference ActiveX methods, properties, or events.

• Read from or write to controls and I/O tagnames or remote
references.

• Run data change scripts and condition scripts.

You cannot use On Shutdown application scripts to:

• Read from or write to controls and I/O tagnames or remote
references.

• Start other applications.
InTouch HMI Scripting and Logic Guide

Configuring Window Scripts27
Configuring Window Scripts
Window scripts are scripts that are linked to specific windows. You can
use the GetWindowName script function to help the run-time
environment reduce scripting necessary to load windows. You can use
window scripts to:

• Execute a script one time when an InTouch window is opened.

• Execute a script periodically while an InTouch window is open.

• Execute a script one time when an InTouch window is closed.

Note: Opening an InTouch window is also referred to as “showing an
InTouch window.” Closing an InTouch window is also referred to as
“hiding an InTouch window.”

To configure a window script

1 Using the Classic View, in the Windows pane, right-click on a
window and then click Window Scripts. The Window Script for
Window Name dialog box appears.

2 In the Condition Type list, do one of the following:

• Click On Show to configure a script to execute one time when
the associated window is started.

• Click While Showing to configure a script to execute
periodically while the associated Window is open.

• Click On Hide to configure a script to execute one time when
the associated window is closed.
InTouch HMI Scripting and Logic Guide

28 Chapter 3 Script Triggers
3 If you select While Showing in the previous step, type a time
interval between 1 and 360000 milliseconds in the Every box.

4 Type your script in the window.

5 Click OK.

To delete a window script

1 Using the Classic View, in the Windows pane, right-click on a
window and click Window Scripts. The Window Script for
Window Name dialog box appears.

2 In the Condition Type list, click the script trigger for the script to
delete. The script appears in the main section of the Window
Script for Window Name dialog box.

3 On the Edit menu, click Clear.

Important: Do not use on hide scripts to read from or write to I/O
tagnames. The I/O value update does not necessarily complete before
the window is hidden.
To read from or write to I/O tagnames when a window closes, configure
a data change script and activate it from an on hide script.

Configuring Key Scripts
Key scripts are scripts that are linked to the pressing of a specific key
or key combination. You can use key scripts to:

• Execute a script one time when a key or key combination is
pressed.

• Execute a script periodically while a key or key combination is
pressed and not released.

• Execute a script one time when a key or key combination is
released.

A key script is identified by the name of key that initiates the script.
For example: Ctrl+q.

Note: If you have configured an action script that uses the same key
or key combination to trigger it, the key script is ignored and instead
the action script is executed.
InTouch HMI Scripting and Logic Guide

Configuring Key Scripts29
To configure a key script

1 Using the Classic View, in the Scripts pane, do one of the
following:

• To configure a new key script, right-click Key, and then click
New. The Key Scripts dialog box appears.

• To configure an existing key script, expand Key, right-click the
script name, and then click Edit. The Edit Key Script dialog box
appears.

2 Click Key and select a key from the Choose Key dialog box.

3 Select the Ctrl and/or Shift check boxes to assign a control key
and/or shift key combination with your selected key.
InTouch HMI Scripting and Logic Guide

30 Chapter 3 Script Triggers
4 In the Condition Type list, do one of the following:

• Click On Key Down to configure a script to execute one time
when the associated key or key combination is pressed.

• Click While Down to configure a script to execute periodically
while the associated key or key combination is pressed.

• Click On Key Up to configure a script to execute one time when
the associated key or key combination is released.

5 If you selected While Down in the previous step, type a time
interval between 1 and 360000 milliseconds in the Every box.

6 Type your script in the window.

7 Click OK.

To delete all key scripts associated with a key

 Using the Classic View, in the Scripts pane, expand Key,
right-click the key script name, and then click Delete. When a
message appears, click Yes.

To delete a key script that is associated with a key

1 Using the Classic View, in the Scripts pane, expand Key,
right-click the key script name, and then click Edit. The Edit Key
Script dialog box appears.

2 In the Condition Type list, click the script trigger for the script to
delete. The script appears in the main section of the Edit Key
Script dialog box.

3 On the Edit menu, click Clear. The script from the main section
clears and the associated script is deleted.

Configuring Condition Scripts
Condition scripts are triggered depending on when certain logical
conditions are fulfilled. Use condition scripts to execute a script:

• One time when a condition is fulfilled.

• One time when a condition is not fulfilled.

• Periodically while a certain condition is fulfilled.

• Periodically while a certain condition is not fulfilled.
InTouch HMI Scripting and Logic Guide

Configuring Condition Scripts31
A condition script is identified by the condition syntax that initiates
the script. For example: tag1>=13.

Note: A script that is assigned the On True condition type only
executes if the condition transitions from False to True. A script that is
assigned the On False condition type only executes if the condition
transitions from True to False.

To configure a condition script

1 Using the Classic View, in the Scripts pane either:

• Right-click Condition and click New. The Condition Scripts
dialog box appears.

• To edit an existing condition script, click the plus sign next to
Condition, right-click the condition script name, and click Edit.
The Edit Condition Script dialog box appears.

2 In the Condition box, type the expression that you want to use as
the condition.

You can type the expression to a maximum length of 1024
characters.

3 You can enter a comment in the Comment box.

4 In the Condition Type list, do one of the following:

• Click On False to configure a script to execute one time when
the condition becomes false.

• Click While False to configure a script to execute periodically
while the condition is false.
InTouch HMI Scripting and Logic Guide

32 Chapter 3 Script Triggers
• Click On True to configure a script to execute one time when
the condition becomes true.

• Click While True to configure a script to execute periodically
while the condition is true.

5 If you selected While False or While True in the previous step, type
a time interval between 1 and 360000 milliseconds in the Every
box.

Note: The conditional WindowViewer timers will stop themselves if the
condition is no longer true. For example, While Mouse Button Down
events will not trigger if the mouse button is no longer down, and key
scripts will stop if keys are no longer down.

6 Type your script, or modify the existing script in the window.

7 Click OK.

To delete all condition scripts that are associated with a
condition

 Using the Classic View, in the Scripts pane, expand Condition,
right-click the condition script name and click Delete. When a
message appears, click Yes.

To delete individual condition scripts that are associated
with a condition

1 Using the Classic View, in the Scripts pane, expand Condition,
right-click the key script name and click Edit. The Edit Condition
Script dialog box appears.

2 In the Condition Type list, click the script trigger for the script to
delete. The script appears in the main section of the Edit Condition
Script dialog box.

3 On the Edit menu, click Clear. The script from the main section
clears and the associated script is deleted.
InTouch HMI Scripting and Logic Guide

Configuring Data Change Scripts33
Configuring Data Change Scripts
You can use data change scripts to execute a script one time when a
certain tagname or dot field changes by more than its defined dead
band.

A data change script is identified by the tagname or tagname field that
initiates the script. For example: Tag1 or Tag2.HiHiLimit.

To configure a data change script

1 Using the Classic View, in the Scripts pane, right-click Data
Change and click New. The Data Change Scripts dialog box
appears.

2 To create a new script, in the Tagname[.field] box, enter a
tagname or tagname field.

To edit an existing script, click the ellipsis button to the right of
the Tagname[.field] box and select the script from the list that
appears.

3 Type your script in the window.

4 Click OK.

To delete a data change script

 Using the Classic View, in the Scripts pane, expand Data Change,
right-click the data change script name and click Delete. When a
message appears, click Yes.
InTouch HMI Scripting and Logic Guide

34 Chapter 3 Script Triggers
Configuring Action Scripts
Use action scripts to associate operator actions with graphic objects.
You can configure one or more of the following events with a graphic
object:

• Clicking the left, center, or right mouse button.

• Clicking and holding the left, center, or right mouse button.

• Releasing the left, center, or right mouse button.

• Double-clicking the left, center, or right mouse button.

• Pressing a key or key combination.

• Pressing and holding a key or key combination.

• Releasing a key or key combination.

• Moving a mouse pointer over an object.

An action script can only be configured in the Animation Link
Selection panel of the object itself.

Important: If a key script exists that is triggered by the same key or
key combination as the action script, the action script is executed and
the key script is ignored.

To configure an action script

1 Double-click the graphic object. The Animation Links Selection
panel appears.
InTouch HMI Scripting and Logic Guide

Configuring Action Scripts35
2 Click Action. The Touch -> Action Script dialog box appears.

3 In the Condition Type list, click one of the following:

To configure a script that
executes on this condition Click

One time when the left mouse button
or a certain key or key combination is
pressed

On Left Click/Key
Down

Periodically while the left mouse
button or a certain key or key
combination is pressed

While Left/Key Down

One time when the left mouse button
or a certain key or key combination is
released

On Left/Key Up

One time when the left mouse button
is double-clicked

On Left Double Click

One time when the right mouse button
is pressed

On Right Click

Periodically while the right mouse
button is pressed

While Right Down

One time when the right mouse button
is released

On Right Up
InTouch HMI Scripting and Logic Guide

36 Chapter 3 Script Triggers
4 If you select On Left Click/Key Down, While Left/Key Down, or
On Left/Key Up:

a Click Key. The Choose Key dialog box appears.

b Click a key.

c Select the Ctrl and/or Shift check boxes to assign a control key
and/or shift key combination to your selected key.

5 If you select While Left/Key Down or While Right Down, type a
time interval between 1 and 360000 milliseconds in the Every box.

6 If you select On Mouse Over, in the After box, type the number of
milliseconds between 1 and 360000 to pass after the mouse has
moved over the object before the script is executed.

7 Type your script in the window.

8 Click OK.

One time when the right mouse button
is double-clicked

On Right Double Click

One time when the center mouse
button is pressed

On Center Click

Periodically while the center mouse
button is pressed

While Center Down

One time when the center mouse
button is released

On Center Up

One time when the center mouse
button is double-clicked

On Center Double
Click

One time when the mouse moves over
the object

On Mouse Over

To configure a script that
executes on this condition Click
InTouch HMI Scripting and Logic Guide

Configuring Action Scripts37
To delete all action scripts associated with an InTouch
graphic object

1 Double-click the graphic object. The object properties panel
appears.

2 Click to clear the Action check box. The action scripts will not be
executed during run time. If you click the Action button, the editor
opens with the last action script that you saved for any object.

To delete an individual action script

1 Double-click the graphic object that has the action script to delete.
The object properties panel appears.

2 Click the Action button. The Touch -> Action Script dialog box
appears.

3 In the Condition Type list, click the script trigger.

4 On the Edit menu, click Clear. The script from the main section
clears and the associated script is deleted.
InTouch HMI Scripting and Logic Guide

38 Chapter 3 Script Triggers
Configuring ActiveX Event Scripts
Use ActiveX event scripts to run a script when an ActiveX event
occurs. Depending on the ActiveX control, such events can include:

• ActiveX control is started: Startup

• ActiveX control is closed: Shutdown

• User clicks on ActiveX control: Click

• User double-clicks on ActiveX control: Doubleclick

An ActiveX event script is identified by a name. By default, the
InTouch HMI automatically adds the control name and event that the
script is associated with. For example: MyActiveXScript
(AlarmViewerCtrl1::Click).

To configure a new ActiveX event script

1 Double-click on the ActiveX control to configure. The ActiveX
control properties dialog box appears.

2 Click the Events tab.
InTouch HMI Scripting and Logic Guide

Configuring ActiveX Event Scripts39
3 Select an event such as click, double-click, shut down, or start up.

4 Click in the Scripts cell for that event. Square brackets appear.

5 Type in a new name for an event script and click OK. When a
message appears, click OK to create a new script. The ActiveX
Event Scripts dialog box appears.

6 In the Name box, you can make changes to the ActiveX event script
name.

7 Type your script in the window.

8 Click OK.

To edit an existing ActiveX event script

1 Using the Classic View, in the Scripts pane, expand ActiveX
Event, right-click the ActiveX script name and click Edit. The
ActiveX Event Scripts dialog box appears.

2 Make any necessary changes to the script and click OK.
InTouch HMI Scripting and Logic Guide

40 Chapter 3 Script Triggers
To delete an existing ActiveX event script

1 Make sure that no ActiveX controls are using the ActiveX event
script to delete. If there are ActiveX controls using the script, do
the following first:

a Remove the ActiveX event script references in the Events panel
of every ActiveX control that may be using it.

b Close all windows and update the use counts.

2 Using the Classic View, in the Scripts pane, expand ActiveX
Event, right-click the ActiveX script name and click Delete. When
a message appears, click Yes. The ActiveX event script is deleted.

Pausing Script Execution at Run Time
By default, when WindowViewer is started, logic is running and
synchronous scripts are executed. You can pause script execution at
run time by halting logic. After pausing you can resume script
execution.

To pause script execution at run time from the menu

 On the Logic menu, click Halt Logic. The synchronous scripts stop
running. Asynchronous scripts continue running but no new
asynchronous scripts are started.

To pause script execution at run time with scripting

 Write the value 0 to the discrete system tag $LogicRunning. The
synchronous scripts stop running. Asynchronous scripts continue
running but no new asynchronous scripts are started.

To resume script execution at run time

 On the Logic menu, click Start Logic. The script execution is
resumed.

To resume script execution at run time with scripting

 Write the value 1to the discrete system tag $LogicRunning. The
$LogicRunning system tag must be contained in an
asynchronous script that is executing at the time the logic is
paused.
InTouch HMI Scripting and Logic Guide

Pausing Script Execution at Run Time41
$LogicRunning System Tag
This system tag monitors and/or controls the running of scripts.

Usage

$LogicRunning

Remarks

Setting the value to 1 starts the script running. Setting the value to 0
stops the script running.

This system tag is equal to selecting Start Logic or Halt Logic on the
Logic menu in WindowViewer.

You cannot stop asynchronous scripts that are currently running.
However, you can prevent new scripts from running.

Data Type

Discrete (read / write)
InTouch HMI Scripting and Logic Guide

42 Chapter 3 Script Triggers
InTouch HMI Scripting and Logic Guide

43
Chapter 4

The Script Language

Use these concepts, techniques, and syntax rules for writing scripts
using the InTouch HMI script language.

• Basic syntax rules. See "Basic Syntax Rules" on page 44.

• Calling pre-defined or custom functions. See "Calling Standard
Functions" on page 48 and "Calling Custom Functions
(QuickFunctions)" on page 50.

• Using value assignments and the various operators. See "Value
Assignments and Operators" on page 51.

• Using conditional statements. See "Using Conditional Program
Branching Structures" on page 71.

• Using loops. See "Using Program Loops" on page 75.

• Using local variables. See "Using Local Variables" on page 78.

For more information on the general operation of the script editor, see
Creating and Editing Scripts.

For more information on the various types of script triggers, see Script
Triggers.

For a reference of standard script functions, see Built-In Functions.
InTouch HMI Scripting and Logic Guide

44 Chapter 4 The Script Language
Basic Syntax Rules
Basic syntax rules cover these aspects of the InTouch HMI script
language:

• Subroutines

• Statements

• Indentation

• Comments

• Tag references

• Literal data values

• Value expressions

• Syntax validation

Subroutines
There is no concept of separate subroutines within the same script,
such as “Sub” procedures in Visual Basic. To structure a script into
multiple subroutines, you must create a custom QuickFunction for
each subroutine. See "Custom Script Functions" on page 67.

Statements
• A statement can be a value assignment, a function call, or a control

structure.

• Each statement in a script must end with a semicolon (;).

• You can have multiple statements in the same line, as long as each
statement ends with a semicolon.

• You can spread a statement across multiple lines by using line
breaks (pressing Enter).

Indentation
You can indent your script code in any manner. Indents have no
functional relevance.

Comments
To mark text as a comment, enclose it in braces { }. Comments can
span multiple lines.
InTouch HMI Scripting and Logic Guide

Basic Syntax Rules45
Tag References
There are several ways to make tag references.

• To refer to a tag that is defined in the local Tagname Dictionary,
simply use the tagname.

• To refer to a specific dot field, use the regular reference format
(Tagname.Dotfield).

• To refer to a data item on a remote node, use a regular remote tag
reference (AccessName:Item).

• You can also define local variables whose scope is limited to the
current script. See "Using Local Variables" on page 78.

Literal Data Values
• You can specify integer values in decimal or hexadecimal notation.

For example, 255 or 0xFF.

• You can specify floating-point values in decimal or scientific
notation. For example, 0.001 or 1E-3.

• To specify a Boolean value, use the numerical values 0 for FALSE
and 1 for TRUE.

• To specify a string value, enclose it in double quotation marks. For
example: "This is a string."

Value Expressions
Value expressions can include literal values, tag references and
function calls, all linked together by suitable operators. See "Value
Assignments and Operators" on page 51.

Syntax Validation
When you save a script, the Script Editor automatically checks it for
correct syntax. You can also start this validation manually by clicking
the Validate button. See "Validating Scripts for Correct Syntax" on
page 21.
InTouch HMI Scripting and Logic Guide

46 Chapter 4 The Script Language
Calling Standard Functions
Standard functions come predefined with the InTouch HMI. See
"Calling Custom Functions (QuickFunctions)" on page 50.

Syntax for Calling Standard Functions
The syntax to call a predefined script function depends on whether and
how the function returns a result.

Some functions do not return any result; some functions return an
optional result that can be assigned to a tag or used in an expression;
some functions return a result that must be assigned to a tag or used
in an expression.

To determine the function type, look at the function description. Each
function description has a syntax listing that shows whether the
function returns a result and whether that result is optional.

To call a function that does not return a result

 Use only the function name (and parameters, if any) in a
statement. For example:
FunctionName(Parameters);

To call a function that requires its result to be assigned

 Use the function name (and parameters, if any) anywhere in a
script where you could use a literal value or a tagname of the
relevant data type. For example, in a value assignment:
ResultsTagname = FunctionName(Parameters);

Or in a nested function call, using it as a parameter for another
standard function:

OtherStandardFunction(FunctionName(Parameters));

To call a function that returns an optional result

 Use either of the preceding procedures.

Passing Parameters to a Function
Parameters to standard predefined functions are usually passed by
value. This means that you can pass any valid expression as a
parameter, as long as the expression evaluates to the data type that is
required for the parameter. Such expressions can include literal
values, tag references, and function calls, all linked together by
suitable operators. For more information on expressions and
operators, see "Value Assignments and Operators" on page 51.

When the script calls the function, the expression is evaluated and the
resulting value passed to the function.
InTouch HMI Scripting and Logic Guide

Calling Custom Functions (QuickFunctions)47
However, there are some functions that require a tag reference as a
parameter. For example:

RecipeSelectRecipe(Filename, RecipeName, Number);

In this example, the RecipeName parameter must be a tag reference
(that is, you must use a literal tagname for the RecipeName
parameter). You cannot pass a string expression instead, even if that
expression evaluates to a valid tagname.

Note: Some legacy predefined functions with only one parameter (for
example, the Ack() function) do not follow the standard syntax of
passing parameters in parentheses. Instead, the parameter is
separated from the function name by a space. Check the syntax
description in the function documentation if you are in doubt about a
particular function.

Calling Custom Functions (QuickFunctions)
Calling a custom QuickFunction differs slightly from calling a
predefined standard function:

• The keyword CALL must precede the QuickFunction name.

• Results returned by QuickFunctions are always optional; you can
use them, but you do not have to.

To call a QuickFunction that does not return a result

 Use the function name (and parameters, if any) preceded by the
keyword CALL in a statement. For example:
CALL QuickFunctionName(Parameters);

To call a QuickFunction that returns a result

 Do either of the following:

• Call the QuickFunction as if it did not return a result (see the
preceding procedure).

• Use the function name (and parameters, if any) preceded by
the keyword CALL anywhere in a script where you could use a
literal value or a tagname of the relevant data type. For
example, in a value assignment:
ResultsTagname = CALL QuickFunctionName(Parameters);

Or in a nested function call, using it as a parameter for a
standard function:
OtherStandardFunction(CALL FunctionName(Parameters));

Note: You cannot nest QuickFunction calls so that a QuickFunction is
used as a parameter for another QuickFunction. For example, Call
QF1(Call QF2()); is not a valid statement.
InTouch HMI Scripting and Logic Guide

48 Chapter 4 The Script Language
Passing Parameters to a QuickFunction
Parameters to QuickFunctions are always passed by value. You cannot
pass parameters to QuickFunctions by reference.

You can pass any valid expression as a parameter, as long as the
expression evaluates to the data type that is required for the
parameter. Such expressions can include literal values, tag references,
and function calls, all linked together by suitable operators. For more
information on expressions and operators, see "Value Assignments
and Operators" on page 51. When the script calls the function, the
expression is evaluated and the resulting value passed to the function.

Note: You cannot nest QuickFunction calls so that a QuickFunction is
used as a parameter for another QuickFunction. For example, CALL
QF1(CALL QF2()); is not a valid statement.

Value Assignments and Operators
In a script, you use value assignments to write values to a tag. The
syntax for a value assignment is as follows:

Tagname = ValueExpression;

When this statement is executed, ValueExpression is written to the
tag referred to by Tagname. ValueExpression can be any valid
expression whose data type matches the tag data type. Value
expressions can include literal values, tag references, and function
calls, all linked together by suitable operators.

See "Supported Operators" on page 52.

See "Setting the Evaluation Order of Operators" on page 68.

See "Examples for Expressions" on page 70.

Supported Operators
The following table lists all supported operators. For information on
the use of a specific operator, see the relevant section.

Operator More information

+ "Addition or Concatenation: +" on page 53

- "Subtraction or Negation: -" on page 54

* "Multiplication: *" on page 55

/ "Division: /" on page 56

** "Power: **" on page 57
InTouch HMI Scripting and Logic Guide

Value Assignments and Operators49
Note: For numeric calculations, always select the operands so that the
result of the calculation is still within the value range of a Real number.
Otherwise, the result will not be correct.

Addition or Concatenation: +
Adds two numeric operands or concatenates two string operands.

Valid operands

For addition: Any Integer or Real value

For concatenation: Any Message value

Data type of return value

For addition: Integer or Real

For concatenation: Message

MOD "Modulo: MOD" on page 58

~ "Complement: ~" on page 59

SHL "Shift Left: SHL and Shift Right: SHR" on
page 60

SHR "Shift Left: SHL and Shift Right: SHR" on
page 60

& "Bitwise AND: &" on page 61

| "Bitwise OR: |" on page 62

^ "Bitwise XOR: ^" on page 63

AND "Logical Conjunction: AND" on page 64

OR "Logical Disjunction: OR" on page 65

NOT "Logical Negation: NOT" on page 66

< "Comparisons: <, >, <=, >=, ==, <>" on page 67

> "Comparisons: <, >, <=, >=, ==, <>" on page 67

<= "Comparisons: <, >, <=, >=, ==, <>" on page 67

>= "Comparisons: <, >, <=, >=, ==, <>" on page 67

== "Comparisons: <, >, <=, >=, ==, <>" on page 67

<> "Comparisons: <, >, <=, >=, ==, <>" on page 67

Operator More information
InTouch HMI Scripting and Logic Guide

50 Chapter 4 The Script Language
Example

MessageTag = "Setpoint value: " + Text(SetpointTag, "#.##");

Subtraction or Negation: -
When used with two operands, performs a regular numeric
subtraction. When used with one operand, toggles the sign of the
operand.

Valid operands

Any Integer or Real value

Data type of return value

Integer or Real

Example

In this example, if OriginalValue is 70, InvertedValue becomes -70. If
OriginalValue is -70, InvertedValue becomes 70.

InvertedValue = -OriginalValue;

Multiplication: *
Regular numeric multiplication.

Valid operands

Any Integer or Real value

Data type of return value

Integer or Real

Division: /
Regular numeric division. If you try to divide by 0 at run time, 0 is
returned as the result.

Valid operands

Any Integer or Real value

Data type of return value

Integer or Real

Power: **
Raises the left operand (the base) to the power of the right operand
(the power).
InTouch HMI Scripting and Logic Guide

Value Assignments and Operators51
Valid operands

Integer or Real values. It is not possible to combine a base of 0 with a
negative power, or a negative base with a fractional power. In these
cases, 0 is returned as the result.

Data type of return value

Integer or Real

Example

8 ** (1/3) returns 2 (the cubic root of 8)

Modulo: MOD
Returns the remainder of the division of two integer values.

Valid operands

Any Integer value.

Data type of return value

Integer

Example

37 MOD 4 returns 1

Complement: ~
Returns the one's complement of an integer value. That is, converts
each zero-bit to a one-bit and vice versa.

Valid operands

Any Integer value.

Data type of return value

Integer

Shift Left: SHL and Shift Right: SHR
Shifts the binary representation of an integer value to the right or left
by a specified number of bit positions. The left operand is the value to
be shifted, the right operand is the number of bit positions. Bits shifted
out of the word are lost. Bit positions vacated by the shift are set to 0.

Valid operands

Any Integer value.

Data type of return value

Integer
InTouch HMI Scripting and Logic Guide

52 Chapter 4 The Script Language
Example

IntTag = IntTag SHL 1; has the following results when executed
repeatedly for an initial tag value of 5:

Bitwise AND: &
Compares the binary representations of two integer numbers, bit for
bit, and returns a result according to the following table:

You can use this operator to quickly “mask out” (set to 0) certain parts
of a bit pattern. For example, the following statement masks out the
upper 24 bits of the IntTag tag:

IntTag = IntTag & 255;

As shown in the table, the result bit is always 0 if one of the operand
bits is 0. In the binary representation of 255, only the lower 8 bits are
1, so the 24 remaining 0-bits cause all the corresponding bits in the
result to be set to 0.

Valid operands

Any Integer value.

Data type of return value

Integer

Iteration Binary pattern Tag value

Initial value 0[...]00000101 5

Execution 1 0[...]00001010 10

Execution 2 0[...]00010100 20

Bit in first
operand

Bit in second
operand

Bit in
result

0 0 0

0 1 0

1 0 0

1 1 1
InTouch HMI Scripting and Logic Guide

Value Assignments and Operators53
Bitwise OR: |
Compares the binary representations of two integer numbers, bit for
bit, and returns a result according to the following table:

This operation is also called “inclusive OR.”

Valid operands

Any Integer value.

Data type of return value

Integer

Bitwise XOR: ^
Compares the binary representations of two integer numbers, bit for
bit, and returns a result according to the following table:

This operation is also called “exclusive OR.”

Valid operands

Any Integer value.

Data type of return value

Integer

Bit in first
operand

Bit in second
operand

Bit in
result

0 0 0

0 1 1

1 0 1

1 1 1

Bit in first
operand

Bit in second
operand

Bit in
result

0 0 0

0 1 1

1 0 1

1 1 0
InTouch HMI Scripting and Logic Guide

54 Chapter 4 The Script Language
Logical Conjunction: AND
Returns TRUE if both discrete operands are TRUE; otherwise, returns
FALSE. The truth table for this operator is as follows:

Valid operands

Any Discrete value.

Data type of return value

Discrete

Logical Disjunction: OR
Returns TRUE if at least one of the discrete operands is TRUE;
otherwise, returns FALSE. The truth table for this operator is as
follows:

Valid operands

Any Discrete value.

Data type of return value

Discrete

p q p AND q

F F F

F T F

T F F

T T T

p q p OR q

F F F

F T T

T F T

T T T
InTouch HMI Scripting and Logic Guide

Value Assignments and Operators55
Logical Negation: NOT
Returns TRUE if the discrete operand is FALSE, and vice versa. The
truth table for this operator is as follows:

Valid operands

Any Discrete value.

Data type of return value

Discrete

Comparisons: <, >, <=, >=, ==, <>
These operators compare two values and return TRUE if the condition
specified by the operator is met. The operands can be of any data type.
For string operands, the comparison is based on alphabetical,
non-case-sensitive ordering, with b being greater than a, c greater
than b, and so on. For discrete operands, TRUE is considered greater
than FALSE. The following table lists all comparison operators along
with their conditions:

Valid operands

Values of any data type (both values must be of the same data type).

Data type of return value

Discrete

p NOT p

F T

T F

Operation Example Condition

Less than a < b a is less than b

Greater than a > b a is greater than b

Less than or equal a <= b a is less than or equal to b

Greater than or equal a >= b a is greater than or equal to b

Equal a == b a is equal to b

Not equal a <> b a is not equal to b
InTouch HMI Scripting and Logic Guide

56 Chapter 4 The Script Language
Setting the Evaluation Order of Operators
In any expression, you can use parentheses to force operators to be
evaluated in a certain order. This works the same way as in any
mathematical expression. If you do not use parentheses, your
expression is evaluated based on the default precedence rules for
operators. The operation with the highest precedence level is executed
first, followed by the operation with the second-highest precedence
level, and so on.

The following table shows the precedence level of each operator.
Operators on the same row have the same precedence level.

-, NOT, ~ Highest precedence

**

*, /, MOD

+, -

SHL, SHR

<, >, <=, >=

==, <>

&

^

|

AND

OR

= Lowest precedence
InTouch HMI Scripting and Logic Guide

Value Assignments and Operators57
Implicit Data Type Conversion
The InTouch HMI scripting language provides implicit value
conversion in assignments between certain data types. However, this
can lead to unexpected results, so you should only use this feature with
caution.

The following table shows what happens when you assign a value of a
certain type to a tag of a different type.

For information on using script functions to convert between other
data types, see "Converting Data Types" on page 99.

Examples for Expressions
The following table shows some valid expressions, along with the
expression’s result and the result’s data type.

Expected
data type

Used
data
type Remarks

Discrete Integer A value of 0 is interpreted as FALSE. Any
other value is interpreted as TRUE.

Discrete Real A value of 0 is interpreted as FALSE. Any
other value is interpreted as TRUE.

Integer Discrete A value of FALSE is converted to 0. A value
of TRUE is converted to 1.

Integer Real Only the value before the decimal separator
is used. All decimal places are discarded.

Real Discrete A value of FALSE is converted to 0. A value
of TRUE is converted to 1.

Real Integer The value is preserved without changes.

Expression
Data type
of result Result

37 MOD 4 Integer 1

37 MOD 4 == 1 Discrete TRUE

NOT (37 MOD 4 == 1) Discrete FALSE

InfoAppActive(InfoAppTitle

("xyz")) == 1

Discrete TRUE if a process
called “xyz” is running

"Batch " + Text(IntTag,

"000")

Message “Batch 010” if IntTag
has a value of 10
InTouch HMI Scripting and Logic Guide

58 Chapter 4 The Script Language
The following table shows some invalid expressions, along with the
reason why they are invalid.

Using Conditional Program Branching
Structures

You can dynamically control the execution path of a script based on
certain conditions being met. The InTouch HMI supports
IF-THEN-ELSE control structures for this purpose.

The basic syntax for an IF-THEN-ELSE control structure is as follows:

Syntax

IF Condition THEN

... statements and/or another IF-THEN-ELSE structure

[ELSE

... statements and/or another IF-THEN-ELSE structure]

ENDIF;

Remember the following rules when working with IF-THEN-ELSE
structures:

• IF-THEN-ELSE structures can be nested, both in the THEN section
and in the ELSE section.

• For every IF statement, there must be a closing ENDIF statement.
An ENDIF statement always applies to the nearest prior IF
statement on the same nesting level.

• Condition must be a valid discrete expression. The THEN section is
executed if Condition is TRUE. The ELSE section is executed if
Condition is FALSE.

Expression Problem

NOT (37 MOD 4) NOT requires a discrete operand.

NOT 37 MOD 4 == 1 NOT has a higher precedence than the other
operators, so the InTouch HMI tries to apply
NOT to the integer value of 37 instead of the
discrete result of the comparison.

"Batch " + IntTag When using the + operator to concatenate
strings, both operands must be strings.
InTouch HMI Scripting and Logic Guide

Using Conditional Program Branching Structures59
• The ELSE section is optional.

• Some other programming languages allow you to check multiple
conditions on the same hierarchy level of an IF-THEN-ELSE
structure and have one general ELSE section that is executed if all
of the conditions evaluate to FALSE. (The If-ElseIf-Else
structure in Visual Basic is an example of this.) This is not possible
in the InTouch HMI. For every condition to check, you must open a
new IF-THEN-ELSE structure. Therefore, to have a single section of
code to act as the ELSE code for all conditions, you must place it in
the ELSE section of the IF-THEN-ELSE structure at the last nesting
level.

Simple Conditional Structure
The following script shows a simple conditional structure. If
SuccessTag is TRUE, the “Success” window opens, otherwise the
“Failure” window opens.

IF SuccessTag == 1 THEN

Show "Success";

ELSE

Show "Failure";

ENDIF;

Nested Conditional Structure
The following script shows how to check for multiple conditions and
have one general ELSE section with code that is executed if none of the
conditions are met.

IF ChoiceTag == 1 THEN

Show "Procedure 1";

ELSE

IF ChoiceTag == 2 THEN

Show "Procedure 2";

ELSE

IF ChoiceTag == 3 THEN

Show "Procedure 3";

ELSE

Show "Default Procedure";

ENDIF;

ENDIF;

ENDIF;
InTouch HMI Scripting and Logic Guide

60 Chapter 4 The Script Language
Invalid Scripting Example (Missing ENDIF)
If you are familiar with Visual Basic, you might try to write a simple
IF statement like this:

IF OpenThisWindow == 1 THEN Show "This Window";

This does not work in the InTouch HMI. For every IF statement, there
must be a closing ENDIF statement.

Invalid Scripting Example (Incorrect Nesting)
If you are familiar with a language like Visual Basic, you might want
to write a conditional structure with multiple conditions and a default
condition like this:

IF ChoiceTag == 1 THEN

Show "Procedure 1";

ELSE IF ChoiceTag == 2 THEN

Show "Procedure 2";

ELSE IF ChoiceTag == 3 THEN

Show "Procedure 3";

ELSE

Show "Default Procedure";

ENDIF;

This does not work in the InTouch HMI. Each IF opens a new nesting
level and must have a corresponding ENDIF statement. For a correct
version of this example, see "Nested Conditional Structure" on
page 72.
InTouch HMI Scripting and Logic Guide

Using Program Loops61
Using Program Loops
Loops allow you to execute a section of code repeatedly. The InTouch
HMI only supports FOR loops. A FOR loop works by monitoring the
value of a numeric loop variable that is incremented or decremented
with each loop iteration. The loop is executed until the value of the
loop variable reaches a fixed limit.

Syntax

FOR LoopTag = StartExpression TO EndExpression [STEP

ChangeExpression]

... statements or another FOR loop ...

NEXT;

• StartExpression, EndExpression and ChangeExpression
together define the number of iterations.

• StartExpression sets the start value of the loop range.
EndExpression sets the end value of the loop range.

• STEP ChangeExpression optionally sets the value by which the
loop tag is incremented or decremented during each loop iteration;
if you do not specify this, a default of 1 is used.

When you execute a FOR loop, the InTouch HMI:

1 Sets LoopTag to the value of StartExpression.

2 Tests whether LoopTag is greater than EndExpression. If so, the
InTouch HMI exits the loop. (If ChangeExpression is negative,
the InTouch HMI tests whether LoopTag is less than
EndExpression.)

3 Executes the statements within the loop.

4 Increments LoopTag by the value of ChangeExpression (1 unless
otherwise specified).

5 Repeats steps 2 through 4.

Remember the following rules when working with FOR loops:

• FOR loops can be nested. The maximum number of nesting levels
depends on the available memory and system resources.

• For every FOR statement, there must be a closing NEXT statement.
A NEXT statement always applies to the nearest prior FOR
statement on the same nesting level.

• LoopTag must be a numeric tag (or local variable).
InTouch HMI Scripting and Logic Guide

62 Chapter 4 The Script Language
• StartExpression, EndExpression and ChangeExpression must
be valid expressions that evaluate to a numeric result.

• If ChangeExpression is positive, EndExpression must be greater
than StartExpression; if ChangeExpression is negative,
StartExpression must be greater than EndExpression.
Otherwise, the loop does not start.

• To exit a loop, use the EXIT FOR statement. For more information,
see "Forcing the End of a Loop" on page 76.

• There is a time limit for loops. See "Time Limit for Loop Execution"
on page 77.

Caution: Loop execution affects other run-time processes. For more
information, see "Effect of Loops on Other Run-Time Processes" on
page 77.

Forcing the End of a Loop
You can exit a loop at any time by calling the following statement:

EXIT FOR;

This statement causes script execution to continue at the statement
immediately following the loop NEXT statement.

Example

The following code fragment uses a loop to insert a large number of
dummy records into a database table. If there is an error inserting a
record, the loop is aborted to prevent creating more errors.

FOR Counter = 1 TO 1000

ResultCode = SQLInsert(ConnectionID, "BatchDetails",

"BindList1");

IF ResultCode <> 0 THEN

LogMessage("Error creating records! Aborting...");

EXIT FOR;

ENDIF;

NEXT;
InTouch HMI Scripting and Logic Guide

Using Program Loops63
Effect of Loops on Other Run-Time Processes
While a FOR loop is executing, all other run-time processes in
WindowViewer are paused. This includes the following areas:

• Screen updates (animation links, value displays, trends, etc.). This
means that you cannot use FOR loops to animate objects, because
no movement will occur until after the loop has completed.

• I/O communications. For example, if you modify the value of an I/O
tag in a FOR loop, only the value after the final iteration is written
to the I/O device.

• Other scripts, including asynchronous QuickFunctions.

You can avoid pausing other run-time processes by placing the FOR
loop in an asynchronous QuickFunction.

Time Limit for Loop Execution
To avoid infinite loops, there is a time limit during which FOR loops
must complete execution. If a loop does not complete execution after
this time span, WindowViewer automatically terminates it and writes
a message about the termination to the Log Viewer.

The default time limit is 5 seconds. You can customize it by adding the
following line to the intouch.ini file in your application directory:

LoopTimeout=x

Replace x with the time limit in seconds.

Note: The time limit is checked only at the NEXT statement of the
loop. Therefore, the first iteration of the loop is always executed, even
if it takes longer than the time limit.

Examples of Loops
The following script uses a simple loop and an indirect tag to re
initialize 100 tags (Tag001 to Tag100) with a value of 0.

DIM Counter AS INTEGER;

FOR Counter = 1 TO 100

IndirectInteger.Name = "Tag" + Text(Counter, "000");

IndirectInteger.Value = 0;

NEXT;
InTouch HMI Scripting and Logic Guide

64 Chapter 4 The Script Language
The following script uses two nested loops and an indirect tag to
reinitialize 1000 tags (Line01_Tag001 to Line10_Tag100) with a value
of 0.

DIM LineCounter AS INTEGER;

DIM TagCounter AS INTEGER;

FOR LineCounter = 1 TO 10

FOR TagCounter = 1 TO 100

IndirectInteger.Name = "Line" + Text(LineCounter, "00") +

"_Tag" + Text(TagCounter, "000");

IndirectInteger.Value = 0;

NEXT;

NEXT;

Using Local Variables
You can declare local variables in a script to store temporary or
intermediate results. This increases performance and helps to keep
your tag count low. You can use local variables just like tagnames in
your script. However, there are certain differences:

• Local variables only exist within the scope of the script in which
they are declared. They lose their value when script execution
finishes. They cannot be referenced by any other scripts in your
application.

• Local variables do not have dotfields.

• Local variables do not count towards the tag count.

Before you can use a local variable in a script, you must declare it;
otherwise, the reference is considered a tagname. See "Declaring a
Local Variable" on page 79.

You can declare local variables that have the same names as tags. See
"Naming Conflicts between Local Variables and Tags" on page 80.

Declaring a Local Variable
You can declare local variables anywhere in your script, as long as you
declare them before their first use. To declare a local variable, use the
following statement:

DIM LocVarName [AS DataType];

LocVarName is the name of the local variable. The name must follow
the naming conventions for tagnames. For more information, see Tag

Name Conventions in the InTouch® HMI Data Management Guide.

DataType is the data type of the local variable. Valid values are
Discrete, Integer, Real, and Message. If you do not specify this
option, Integer is used as the default.
InTouch HMI Scripting and Logic Guide

Using Local Variables65
You must use a separate DIM statement for each local variable to
declare.

You can declare any number of local variables. The number is only
limited by the available memory.

Examples

To declare an Integer variable:

DIM MyLocalIntVar AS Integer;

To declare multiple Real variables:

DIM MyLocalRealVar1 AS Real;

DIM MyLocalRealVar2 AS Real;

The following statement is not valid:

DIM MyLocalRealVar1, MyLocalRealVar2 AS Real;

Naming Conflicts between Local Variables and
Tags

You can declare a local variable with the same name as an existing
tag. However, when you refer to that name in a script, the local
variable always takes precedence over the tag. For example, assume
you have an existing Integer tag called “iTag,” and you run the
following script:

DIM iTag as Integer;

iTag = 20;

In this scenario, the value assignment writes a value to the local
variable only. The value of the tag with the same name remains
unchanged.
InTouch HMI Scripting and Logic Guide

66 Chapter 4 The Script Language
InTouch HMI Scripting and Logic Guide

67
Chapter 5

Custom Script Functions

InTouch HMI QuickFunctions are scripts that in other environments
might be known as macros, subroutines, or procedures.

About QuickFunctions
QuickFunctions are scripts that you can call from other scripts and
animation links. The main advantage of QuickFunctions is a reduction
in duplicate code.

You can pass values to QuickFunctions, which can use the values and
return results.

QuickFunctions can run asynchronously. Unlike other scripts, they
can run in the background without disrupting the main program flow.
A QuickFunction running asynchronously can be used for
time-consuming operations, such as SQL database calls.

Note: Plan QuickFunctions and their arguments carefully, because if
you want to modify the arguments in a QuickFunction, you must first
delete all calls to that QuickFunction from every script that uses the
QuickFunction. After the change is made, you must then add the
QuickFunction call back to the scripts. See the note in "Configuring
QuickFunctions" on page 68.

There are three basic parts of a QuickFunction:

• Name

• Arguments (optional)

• Script body with optional return values
InTouch HMI Scripting and Logic Guide

68 Chapter 5 Custom Script Functions
QuickFunctions are executed by using the CALL function in either an
animation link or another script. See "Calling QuickFunctions" on
page 69.

Configuring QuickFunctions
You can create, modify, or delete QuickFunctions.

To create a QuickFunction

1 In the Scripts pane, right-click QuickFunctions, and then click
New. The QuickFunctions dialog box appears.

2 In the Function box, enter a name for the QuickFunction.

3 In the Arguments area, for each argument, enter a name on the
left and a data type on the right.

Arguments are local variables that exist only within the
QuickFunction in which they are defined. You can have up to 16
arguments per QuickFunction. Argument names can have 31
characters but no spaces. The argument names must begin with an
alpha character. Argument names must be unique.

4 Type your script in the window.
InTouch HMI Scripting and Logic Guide

Calling QuickFunctions69
5 To cause the QuickFunction to return a result, add to your script:
RETURN value

Value can be a literal value, a local variable, or global tagname or
calculated expression. The script terminates at the RETURN
command and continues at the calling function.

6 Click OK.

To modify a QuickFunction

1 In the Scripts pane, expand QuickFunctions, right-click the
QuickFunction to modify and click Edit. The QuickFunctions
dialog box appears.

2 Make modifications to the script body and click OK.

Note: You cannot make modifications to the argument list if there are
calls to the QuickFunction in the InTouch application. You must delete
those calls first, close all InTouch windows, and update the use counts.

To delete a QuickFunction

1 Delete all calls to the QuickFunction, close all InTouch windows,
and update the use counts.

2 In the Scripts pane, expand QuickFunctions, right-click the
QuickFunction to delete and click Delete. When a message
appears, click Yes.

Calling QuickFunctions
You can configure scripts and animation links to call QuickFunctions
and to process or show a possible return value.

A QuickFunction is not called if the parameter values have not
changed. You can use $second as a parameter to insure a
QuickFunction is executed at least every second.

For more information, see "Calling Custom Functions
(QuickFunctions)" on page 50.

Creating Asynchronous QuickFunctions
You can define QuickFunctions to run asynchronously (that is,
parallel) to the main program flow.

To create an asynchronous QuickFunction

1 In the Script Editor, create a QuickFunction.

2 On the Options menu, click Asynchronous.
InTouch HMI Scripting and Logic Guide

70 Chapter 5 Custom Script Functions
Limitations of Asynchronous QuickFunctions
You cannot:

• Return a value from an asynchronous QuickFunction.

• Run more than one instance of the same QuickFunction at the
same time.

• Stop asynchronous QuickFunctions after they start executing.

You should not:

• Run more than three different asynchronous QuickFunctions at
the same time. Running more than three QuickFunctions at the
same time reduces system performance significantly.

• Use asynchronous functions as part of expressions for animation
links, e.g. Tool Tips.

Checking if any Asynchronous QuickFunctions
are Running

You can check if any asynchronous QuickFunctions are running with
the IsAnyAsyncFunctionBusy() function. You can use this function to
make the QuickScript that calls an asynchronous QuickFunction wait
for all other asynchronous QuickFunctions to complete processing.

IsAnyAsyncFunctionBusy() Function
Returns a discrete value indicating if any asynchronous
QuickFunctions are running.

Syntax

result = IsAnyAsyncFunctionBusy (timeout)

Arguments

result
The discrete value that indicates if asynchronous QuickFunctions
are running with following meaning:

• 0 = No asynchronous QuickFunctions are running.

• 1 = Asynchronous QuickFunctions are running.

timeout
The number of seconds to wait before checking if any asynchronous
QuickFunctions are running. A literal integer value, integer
tagname or integer expression.
InTouch HMI Scripting and Logic Guide

Creating Asynchronous QuickFunctions71
Example(s)

Assume you want to connect to several SQL databases using
asynchronous QuickFunctions, and you know that it takes 2 minutes
to make those connections.

First, execute the asynchronous QuickFunctions to connect to the SQL
databases.

Next, use the IsAnyAsyncFunctionBusy(120) function in a QuickScript
to allow enough time for SQL to make the connections before
completing the QuickFunction.

If after 2 minutes the connections have not been made and the
asynchronous QuickFunctions are still busy trying to make the
connections, a value of 1 (true) is returned by the
IsAnyAsyncFunctionBusy() function.

You can now show an error message telling the operator that the SQL
connections were unsuccessful.

The following script implements the scenario:

IF IsAnyAsyncFunctionBusy(120) == 1 THEN

SHOW "SQL Connection Error Dialog";

ENDIF;

Stopping Asynchronous QuickFunctions from
Running

You cannot stop asynchronous QuickFunctions after they are started,
but you can stop further asynchronous QuickFunctions from being
started by stopping the script logic. This affects all QuickScripts in
your InTouch application.

For more information on stopping script execution, see "Pausing Script
Execution at Run Time" on page 36.
InTouch HMI Scripting and Logic Guide

72 Chapter 5 Custom Script Functions
InTouch HMI Scripting and Logic Guide

73
Chapter 6

Built-In Functions

InTouch QuickScript functions allow you to execute commands and
logical operations based on specified criteria being met. You can use
QuickScript functions by themselves and have them executed
whenever a certain condition is met, or use them in animation display
links.

Important: This chapter includes legacy InTouch QuickScript
functions designed to work only on 32-bit versions of the Windows
operating system. These functions should not be included in any
InTouch QuickScript designed to run on a 64-bit version of Windows.
Notes within this chapter identify these legacy 32-bit only functions.

Forcing Updates in Animation Display Links
If you use QuickScripts in animation links, the animation links are
only updated if a tag is associated with them. This tag acts as a trigger
whenever its value changes. A good choice is to use the $Second or
$Minute system tag to update animation links.

To force an update in an animation display link

1 Open the animation link in the object property window.

2 Add a trigger tag (for example $Second) to the calculation. For
example:

• If the animation link is real or integer, you can multiply the
expression with $Second/$Second.

• If the animation link is string, you can add StringMid(
$TimeString, 0, 0) to the expression.
InTouch HMI Scripting and Logic Guide

74 Chapter 6 Built-In Functions
• If the animation link is discrete you can add ($second.00 -
$second.00) to the expression.

Mathematical Calculations
The InTouch HMI supports basic mathematical functions that you can
use in scripts and in animation links, such as functions to:

• Round and truncate numbers.

• Calculate sine and cosine.

• Calculate logarithms and exponentials.

• Calculate the square root.

Rounding, Truncating, and Determining Sign
In a script, you can use the following functions to round numbers,
truncate numbers, and determine the sign of numbers:

Abs() Function
Returns the absolute value of a specified number. You can use this to
convert a negative number to a positive number.

Syntax

result = Abs (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Abs(14) returns 14.

Abs(-7.5) returns 7.5.

Use To

Abs() Calculate the absolute of a value or expression.

Int() Calculate the integer of a value or expression.

Round() Round a value or expression.

Sgn() Determine the sign (minus, plus, zero) of a value or
expression.

Trunc() Return the decimal point prefix of a value or
expression.
InTouch HMI Scripting and Logic Guide

Mathematical Calculations75
Int() Function
Returns the integer less than (or equal to) a specified number.

Syntax

result = Int (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Int(4.7) returns 4.

Int(-4.7) returns -5.

Note: For negative real numbers, this function returns an integer that
is smaller than the specified number. For example, Int(-4.7) is not -4,
but -5. To have the integer part returned, use the Trunc() function. See
"Trunc() Function" on page 77.

Round() Function
Rounds a number to a specified precision. The result is a real number.

Syntax

result = Round (number, precision)

Parameters

number
A literal number, analog tagname, or numeric expression.

precision
The precision to which the number is rounded. Can be a literal
number, analog tagname, or numeric expression.

Example(s)

Round(4.3, 1) returns 4.

Round(4.3, 0.01) returns 4.30.

Round(4.5, 1) returns 5.

Round(-4.5, 1) returns -4.

Round(106, 5) returns 105.

Round(43.7, 0.5) returns 43.5.
InTouch HMI Scripting and Logic Guide

76 Chapter 6 Built-In Functions
Sgn() Function
Returns the sign of a number. Use it to determine if a number,
tagname, or expression is negative, positive, or zero.

Syntax

result = Sgn (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Sgn(425) returns 1.

Sgn(0) returns 0.

Sgn(-37.3) returns -1.

Trunc() Function
Returns the truncated value of a number. The truncated value is the
part before a decimal point. Use it to work with the integer part of a
real number.

Syntax

result = Trunc (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Trunc(4.3) returns 4.

Trunc(-4.3) returns -4.

Note: You can also use this function to work with the fractional part of
a number. To return the fractional part of a specified number use the
Trunc() function as follows:
result = number - trunc(number);
InTouch HMI Scripting and Logic Guide

Mathematical Calculations77
Using Trigonometric Functions
In a script, you can use the following functions to do trigonometric
calculations.

Note: Trigonometric QuickScript functions in the InTouch HMI use
angles in degrees (0 - 360). To work with radians instead you must
perform the corresponding calculation before passing the parameter to
the function or after retrieving the result from the function.

Sin() Function
Returns the sine of a number. For trigonometric functions the number
is the angle in degrees.

Syntax

result = Sin (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Sin(90) returns 1.

Sin(0) returns 0.

Sin(30) returns 0.5.

100 * Sin (6 * $second) returns a sine wave with an amplitude of
100 and a period of one minute.

Use To

Sin() Calculate the sine of an angle.

ArcSin() Calculate the arcus sine of a value or expression.

Cos() Calculate the cosine of an angle.

ArcCos() Calculate the arcus cosine of a value or expression.

Tan() Calculate the tangent of an angle.

ArcTan() Calculate the arcus tangent of a value or expression.
InTouch HMI Scripting and Logic Guide

78 Chapter 6 Built-In Functions
ArcSin() Function
Returns the arc sine of a number. It is the reciprocal function to the
Sin() function. Use the ArcSin() function to calculate the angle from
-90 to 90 degrees whose sine is equal to that number.

Syntax

result = ArcSin (number)

Parameters

number
A literal number, analog tagname, or numeric expression in the
range of -1 to 1.

Example(s)

ArcSin(1) returns 90.

ArcSin(0) returns 0.

ArcSin(0.5) returns 30.

Cos() Function
Returns the cosine of a number. For trigonometric functions the
number is the angle in degrees.

Syntax

result = Cos (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Cos(90) returns 0.

Cos(0) returns 1.

Cos(60) returns 0.5.

20 + 50 * Cos(6 * $second)

produces a sine wave oscillating around 20 with an amplitude of 50
and a period of one minute.
InTouch HMI Scripting and Logic Guide

Mathematical Calculations79
ArcCos() Function
Returns the arcus cosine of a number. It is the reciprocal function to
the Cos() function. Use the ArcCos() function to calculate the angle
from 0 to 180 degrees whose cosine is equal to that number.

Syntax

result = ArcCos (number)

Parameters

number
A literal number, analog tagname, or numeric expression in the
range of -1 to 1.

Example(s)

ArcCos(1) returns 0.

ArcCos(-0.5) returns 120.

Tan() Function
Returns the tangent of a specified number. For trigonometric functions
the number is the angle in degrees.

Syntax

result = Tan (number)

Parameters

number
A literal number, analog tagname, or numeric expression.

Example(s)

Tan(45) returns 1.

Tan(0) returns 0.

ArcTan() Function
Returns the arcus tangent of a number. It is the reciprocal function to
the Tan() function. Use the ArcTan() function to calculate the angle
whose tangent is equal to that number.

Syntax

result = ArcTan (number)

Parameters

number
A literal number, analog tagname, or numeric expression.
InTouch HMI Scripting and Logic Guide

80 Chapter 6 Built-In Functions
Example(s)

ArcTan(1) returns 45.

ArcTan(0) returns 0.

Returning the Value of Pi
In a script, you can use the Pi() function to use the constant Pi in
mathematical calculations. The Pi() function is exact to 7 digits after
the decimal point.

Syntax

result = Pi ()

Example(s)

Pi() returns 3.1415927.

Calculating Logarithms
In a script, you can use the following functions to run calculations with
logarithms and exponential functions.

Log() Function
Returns the natural logarithm of a specified positive number. This is
the reciprocal function to the Exp() function.

Note: The natural logarithm of 0 and negative numbers is undefined.
If you pass 0 or a negative number to the Log() function, it returns a
result of -99.0000000.

Syntax

result = Log (number)

Parameters

number
A positive literal number, analog tagname, or numeric expression.

Use To

Log() Calculate the natural logarithm of a value or
expression.

Exp() Calculate the exponential of a value or expression.

LogN() Calculate the logarithm of a value or expression to
the base of another value or expression.
InTouch HMI Scripting and Logic Guide

Mathematical Calculations81
Example(s)

Log(100) returns 4.6051702.

Log(1) returns 0.

Exp() Function
Returns the exponential of a specified number. This is the reciprocal
function to the Log() function and is equivalent to e raised to a power.

Note: If you pass values outside the range of -88.72 to 88.72 to the
Exp() function, it returns a result of -99.0000000.

Syntax

result = Exp (number)

Parameters

number
A literal number, analog tagname, or numeric expression in the
range of -88.72 to 88.72.

Example(s)

Exp(1) returns 2.7182818.

Exp(0) returns 1.

LogN() Function
Returns the logarithm of a positive number to a specified base. This is
the reciprocal function to the base to the power of the logarithm.

Example(s)

Syntax

result = LogN (number, base)

Parameters

number
A positive literal number, analog tagname, or numeric expression.

base
A positive literal number, analog tagname, or expression unequal
to 1.
InTouch HMI Scripting and Logic Guide

82 Chapter 6 Built-In Functions
Example(s)

LogN(8,2) returns 3.

LogN(num,btag) returns the logarithm of num to the base btag.

Note: If you pass invalid parameters to the LogN() function, it returns
a result of -99.0000000.

Calculating the Square Root
In a script, you can use the Sqrt() function to calculate the square root
of a specified non-negative number.

Note: If you pass a negative value to the Sqrt() function, it returns a
result of -99.0000000.

Syntax

result = Sqrt (number)

Parameters

number
A non-negative literal number, analog tagname, or numeric
expression

Example(s)

Sqrt(36) returns 6.

Sqrt(perftag) returns the square root of the value held by the
tagname perftag.

String Operations
You can use many basic string functions in scripts and animation
links. You can use these functions to:

• Return parts of strings.

• Change the case of strings.

• Remove and add spaces to strings.

• Handle ASCII values in strings.

• Search and replace in strings.

• Compare strings with each other.

• Return other information about strings, such as their length.
InTouch HMI Scripting and Logic Guide

String Operations83
Returning Parts of Strings
In a script, you can use the StringLeft(), StringMid() and StringRight()
functions to return parts of strings.

StringLeft() Function
Returns a specified number of characters from the beginning of a
string.

Syntax

result = StringLeft (string, length)

Parameters

string
A literal text, message tagname, or string expression.

length
The numbers of characters to return. A literal number, analog
tagname, or numeric expression.

Example(s)

StringLeft("Hello World",5) returns “Hello”.

StringLeft("Hello World",20) returns “Hello World”.

StringLeft("Hello World",0) returns “Hello World”.

Note: If you pass 0 as length to the StringLeft() function, it returns
the entire string.

StringRight() Function
Returns a specified number of characters from the end of a string.

Syntax

result = StringRight (string, length)

Parameters

string
A literal text, message tagname, or string expression.

length
The number of characters to return. A literal number, analog
tagname, or numeric expression.
InTouch HMI Scripting and Logic Guide

84 Chapter 6 Built-In Functions
Example(s)

StringRight("Hello World",5) returns “World”.

StringRight("Hello World",20) returns “Hello World”.

StringRight("Hello World",0) returns “Hello World”.

Note: If you pass 0 as length to the StringRight() function, it returns
the entire string.

StringMid() Function
Returns a part of a string. You can specify the starting point and how
many characters to return.

Syntax

result = StringMid (string, startpos, length)

Parameters

string
A literal text, message tagname, or string expression.

startpos
The starting position in the string. A literal number, analog
tagname, or numeric expression.

length
The number of characters to return. A literal number, analog
tagname, or numeric expression.

Example(s)

StringMid("Hello World",5,4) returns "o Wo”.

StringMid("Hello World",7,50) returns “World”.

StringMid("Hello World",4,0) returns “lo World”.

Note: If you pass 0 as length to the StringMid() function, it returns
the entire string after the starting position.
InTouch HMI Scripting and Logic Guide

String Operations85
Changing Case of Strings
In a script, you can use the StringLower() and StringUpper() functions
to return a specified string in lowercase and uppercase. You can assign
the result to the specified string to perform a conversion from upper to
lowercase or vice versa.

StringLower() Function
Returns the lowercase equivalent of a string.

Syntax

result = StringLower (string)

Parameters

string
A literal text, message tagname, or string expression.

Example(s)

StringLower("TURBINE") returns “turbine”.

StringLower("The Value Is 22.2") returns “the value is 22.2”.

mtag = StringLower(mtag) converts the message value of mtag to
lowercase.

StringUpper() Function
Returns the uppercase equivalent of a string.

Syntax

result = StringUpper (string)

Parameters

string
A literal text, message tagname, or string expression.

Example(s)

StringUpper("abcd") returns “ABCD”.

StringUpper("The Value Is 22.2") returns “THE VALUE IS
22.2”.

mtag = StringUpper(mtag) converts the message value of mtag to
uppercase.
InTouch HMI Scripting and Logic Guide

86 Chapter 6 Built-In Functions
Removing Spaces from Strings
In a script, you can trim leading and trailing spaces (blanks) from
strings by using the StringTrim() function. You can use this to remove
unwanted spaces from a string, for example after a user input.

StringTrim() Function
Rrim leading and trailing spaces (blanks) from strings. You can use
this to remove unwanted spaces from a string, for example after a user
input.

Syntax

result = StringTrim (string, trimtype)

Parameters

string
A literal text, message tagname, or string expression.

trimtype
A literal value, analog tagname, or numeric expression that
determines which spaces to remove:

• 1 = Leading spaces.

• 2 = Trailing spaces.

• 3 = Leading and trailing spaces.

Remarks

This function removes all leading and trailing white spaces from a
string. White spaces are spaces (ASCII 0x20) and control characters in
the range from ASCII 0x09 to 0x0D.

Example(s)

To remove all spaces in a message tag, mtag, with an action script, use
the following script:

DIM i AS INTEGER;

DIM tmp AS MESSAGE;

mtag = StringTrim(mtag,3); {mtag is trimmed}

FOR i = 1 TO StringLen(mtag) {run variable i over the

characters of mtag}

 IF StringMid(mtag, i, 1)<>" " THEN {i-th character is not

space} tmp = tmp + StringMid(mtag, i, 1); {
InTouch HMI Scripting and Logic Guide

String Operations87
add that character to tmp}

 ENDIF;

NEXT;

mtag = tmp; {pass tmp back to mtag}.

Other examples:

StringTrim(" Joe ",1) returns “Joe ”.

StringTrim(" Joe ",2) returns “ Joe”.

This script removes all spaces from the left and the right of the mtag
value:

mtag = StringTrim(mtag,3)

Formatting Strings with Spaces
In a script, you can use the StringSpace() function to add spaces
(blanks) to strings.

Syntax

result = StringSpace (number)

Parameters

number
A literal number, numeric tagname, or numeric expression.

Example(s)

StringSpace(4) returns a string consisting of 4 blanks.

"Pump"+StringSpace(1)+"Station" returns “Pump Station”.

Converting Between Characters and ASCII Codes
In a script, you can convert characters of a string to ASCII codes and
ASCII codes back to characters by using the StringChar() and
StringASCII() functions.

These functions do not support multiple byte character sets. Only
characters in the range of 0-255 are supported.

Using ASCII codes is useful if you wish to perform some numeric
calculation on a string (for example for encoding a string).
InTouch HMI Scripting and Logic Guide

88 Chapter 6 Built-In Functions
StringChar() Function
Returns a single character corresponding to a specified ASCII code.

Syntax

result = StringChar (ASCIICode)

Parameters

ASCIICode
A literal number, numeric tagname, or numeric expression in the
range of 0 to 255.

Remarks

This function is very useful for passing control characters to external
devices (such as printers or modems) or double quotes to SQL queries.

Example(s)

StringChar(65) returns "A".

This script returns “Hello World” enclosed by double quotes:

StringChar(34)+"Hello World"+StringChar(34)

This script returns “Hello World” where both words are separated by a
carriage return and a line feed:

"Hello"+StringChar(13)+StringChar(10)+"World"

StringASCII() Function
Returns the ASCII code of the first character of a string.

Syntax

result = StringASCII (string)

Parameters

string
A literal string, message tagname, or string expression.

Example(s)

StringASCII("A") returns 65.

StringASCII("hello world") returns 104.
InTouch HMI Scripting and Logic Guide

String Operations89
Searching and Replacing Text in Strings
For languages that use single-byte character sets (such as English)
you can use the StringInString() and StringReplace() functions in a
script to perform limited search and replace functionality on message
tags.

StringInString() Function
Returns the first position of a specified string in another string.

Syntax

result = StringInString (string, searchfor, startpos, casesens)

Parameters

string
This is the string to searched. A literal string, message tagname,
or string expression.

searchfor
This is the string that is to be searched for. A literal string,
message tagname, or string expression.

startpos
This is the starting position in string of the search. A literal value,
numeric tagname, or numeric expression.

casesens
Determines whether the search is case sensitive. Can be 0 or 1,
discrete tagname, or Boolean expression.

0 - search is not case sensitive (uppercase and lowercase are
considered the same).

1 - search is case sensitive (uppercase and lowercase are
considered to be different).

Remarks

Use this function to determine if a certain string is contained in a
message tag. You can specify the starting position for the search and
whether the letter case is to be respected.

Use To

StringInString() Search for a certain string in another string
and return the result as a position.

StringReplace() Replace certain characters or words with
other characters or words in a specified
string and return the result as a new string.
InTouch HMI Scripting and Logic Guide

90 Chapter 6 Built-In Functions
Example(s)

This script returns 5—because the first “M” in “MTX” is in the fifth
position of the string:

StringInString("DBO MTX-010","MTX",1,0)

This script returns 3—because the first “M” in “MTX” is in the third
position in the string:

StringInString("T-MTX 010 MTX","MTX",1,0)

This script returns 11—because the first “M” in “MTX” after the 8th
position is in the 11th position in the string:

StringInString("T-MTX 010 MTX","MTX",8,0)

This script returns 11—because the first string that matches MTX in
the correct case is in the 11th position:

StringInString("t-mtx 030 MTX", "MTX",1,1)

This script returns 0—because there is no “Mty” in the string:

StringInString("t-mtx 030 MTY-Mtx","Mty",1,1)

StringReplace() Function
Searches for a string within another string and, if found, replaces it
with yet another string. You can specify:

• Case-sensitivity - This determines if uppercase letters and
lowercase letters are to be treated as identical letters or not.

• Number of occurrences to replace - This is useful if more than one
occurrence of the search string is found.

• Match whole words - Use this if the search string is a whole word.

Note: This function does not support double byte character sets.

Syntax

result = StringReplace (string, searchfor, replacewith,

casesens, numtoreplace, matchwholewords)

Parameters

string
The string to search within. A literal string, message tagname, or
string expression.

searchfor
The string that is to be searched for. A literal string, message
tagname, or string expression.
InTouch HMI Scripting and Logic Guide

String Operations91
replacewith
The string that is used as replacement. A literal string, message
tagname, or string expression.

casesens
Determines whether the search is case sensitive. Can be 0 or 1,
discrete tagname or Boolean expression.

0 - search is not case sensitive (uppercase and lowercase are
considered the same)

1 - search is case sensitive (uppercase and lowercase are
considered to be different)

numtoreplace
The number of replacements to make. Set it to -1 to replace all
occurrences of the found search string. A literal integer value,
integer tagname, or integer expression.

matchwholewords
Determines whether only whole words are matched. Can be 0 or 1,
discrete tagname, or Boolean expression.

0 - the function looks for the search string characters anywhere in
the string

1 - only whole words are matched

Example(s)

This statement replaces only the first occurrence and returns "MTY
030 MTX".

StringReplace("MTX 030 MTX","MTX","MTY",0,1,0)

This statement replaces all occurrences and returns "MTY 030 MTY".

StringReplace("MTX 030 MTX","MTX","MTY",0,-1,0)

This statement replaces all occurrences that match the case and
returns "MTY 030 mtx".

StringReplace("MTX 030 mtx","MTX","MTY",1,-1,0)

This statement replaces all occurrences that are whole words and
returns "MTY 030 QMTX".

StringReplace("MTX 030 QMTX","MTX","MTY",0,-1,1)
InTouch HMI Scripting and Logic Guide

92 Chapter 6 Built-In Functions
Returning Information about Strings
In a script, you can use the StringLen() and StringTest() functions to
return the length of a specified string and to test whether a character
is in a certain group of characters.

StringLen() Function
Returns the length of a specified string, including non-visible
characters.

Syntax

result = StringLen (string)

Parameters

string
A literal string, message tagname, or string expression.

Example(s)

StringLen("Twelve percent") returns 14.

StringLen("12%") returns 3.

StringLen("The end." + StringChar(13)) returns 9.

StringTest() Function
Tests whether a first character of a string is in a certain group of
characters.

Syntax

result = StringTest (string, group)

Parameters

string
A literal string, message tagname, or string expression.

group
The number of the group to test the character against. A literal
value, integer tagname, or integer expression in the range of 1 to
11.

1 - alphanumeric characters (A-Z, a-z, 0-9)

2 - numeric characters (0-9)

3 - alphabetic characters (A-Z, a-z)

4 - uppercase characters (A-Z)

5 - lowercase characters (a-z)
InTouch HMI Scripting and Logic Guide

String Operations93
6 - punctuation characters (ASCII 0x21 - 0x2F), for example
!,@,#,$,%,^,&,* and so on

7 - ASCII characters (ASCII 0x00 - 0x7F)

8 - Hexadecimal characters (0-9, A-F, a-f)

9 - Printable characters (ASCII 0x20 - 0x7E)

10 - Control characters (ASCII 0x00 - 0x1F and 0x7F)

11 - White space characters (ASCII 0x09 - 0x0D and 0x20)

Example(s)

This string returns a 1—because “A” is an alphanumeric character:

StringTest("ACB123",1)

This string returns a 0—because “A” is not a lowercase character:

StringTest("ABC123",5)

Comparing Strings
In a script, you can use the StringCompare(), StringCompareNoCase()
and StringCompareEncrypted() functions to compare two strings.

StringCompare() Function
Compares two strings with each other and returns a Boolean result (0
= strings are equal). The case of each letter is respected so that, for
example, ‘A’ is considered not equal to ‘a’.

Syntax

result = StringCompare (string1, string2)

Parameters

string1
A literal string, message tagname, or string expression.

string2
A literal string, message tagname, or string expression.

Use To

StringCompare() Make a case-sensitive
comparison.

StringCompareNoCase() Make a case-insensitive
comparison.

StringCompareEncrypted() Compare an encrypted string
with an unencrypted string.
InTouch HMI Scripting and Logic Guide

94 Chapter 6 Built-In Functions
Example(s)

StringCompare ("Apple","Apple") returns 0.

StringCompare ("Apple","apple") returns 1.

This string compares the two message tags and returns a discrete
result (0 or 1):

StringCompare (mtag1, mtag2)

StringCompareNoCase() Function
Compares two strings with each other and returns an integer result.
The case of each letter is not respected so that, for example, ‘A’ is
considered equal to ‘a’.

The integer result returns:

• 0 if both strings are identical (ignoring case).

• Non-zero otherwise. The result is the difference of ASCII values
between the differentiating character (ignoring case).

Note: The result of the StringCompareNoCase() function can be used
as a discrete result, as all non-zero values are considered to equal
TRUE in InTouch scripting.

Syntax

result = StringCompareNoCase (string1, string2)

Parameters

string1
A literal string, message tagname, or string expression.

string2
A literal string, message tagname, or string expression.

Example(s)

This string returns 0—because the strings are considered identical:

StringCompareNoCase("Apple","apple")

This string returns -6—because the strings are considered not
identical and the ASCII values of the first differentiating character “p”
minus the ASCII value of the corresponding letter “v” equals -6:

StringCompareNoCase("Apple","Avocado")
InTouch HMI Scripting and Logic Guide

Converting Data Types95
StringCompareEncrypted() Function
Compares an encrypted string with an unencrypted string and returns
a Boolean result. You can use this function for password verification.
For more information on password encryption, see Animating Objects

in the InTouch® HMI Visualization Guide.

Syntax

result = StringCompareEncrypted (plain, encrypted)

Parameters

plain
A literal string, message tagname, or string expression.

encrypted
An encrypted message tagname.

Example(s)

This script returns 1 when the plain text and the encrypted text are
identical, otherwise it returns 0. Passwd is a message tag containing a
value from an encrypted user input. PlainTxt is a message tag against
which the user input is to be compared.

StringCompareEncrypted(PlainTxt, Passwd)

Converting Data Types
In a script, you can convert values contained in tagnames to other data
types by using conversion QuickScripts. This allows you to manipulate
string data with mathematical functions or to log values to the

ArchestrA® Log Viewer for debugging purposes.

• Text() Function

• StringFromIntg() Function

• StringFromReal() Function

• StringToIntg() Function

• StringToReal() Function

• DText() Function
InTouch HMI Scripting and Logic Guide

96 Chapter 6 Built-In Functions
Text() Function
The Text() function returns the value of a number as a string
according to a specified format. You may want to do this to format a
value in a certain way or to combine the result with other string values
for further processing.

Syntax

result = Text (number, format)

Parameters

number
A literal numeric value, analog tagname, or numeric expression.

format
Use “#”, “0”, “.”, or “,”.

Use “#” to represent a digit, “.” to represent the decimal separator,
“0” to force a leading zero, and “,” to insert a comma.

If you use a zero in the format, it must be followed by zeros. All
places to the right of the decimal point must always be zeros. For
example, 000.00 is correct, while #0#0.0# is incorrect.

The function rounds the value, if necessary. A literal string,
message tagname, or string expression.

Example(s)

Text(66,"#.00") returns “66.00”.

Text (1234,"#") returns “1234”.

Text (123.4, "#,##0.0") returns “123.4”.

Text (12.3, "0,000.0") returns “0,012.3”.

Text(3.57,"#.#") returns “3.6”.

This script returns the string “Reactor Pressure is 1690.3 mbar” if the
analog tagname “pressure” contains the value 1690.2743.

"Reactor Pressure is "+Text(pressure,"#.#")+" mbar"
InTouch HMI Scripting and Logic Guide

Converting Data Types97
StringFromIntg() Function
In a script, you can convert an integer value to a string value by using
the StringFromIntg() function.

This function returns the string value of an integer value and performs
a base conversion at the same time. This can be used, for example, to
show text together with integer values or for converting integer values
to hexadecimal numbers.

Syntax

result = StringFromIntg (number, base)

Parameters

number
A literal integer value, integer tagname, or integer expression.

base
The base of the conversion. This is used for converting the value to
a different base, such as binary (2), decimal (10) or hexadecimal
(16). A literal integer value, integer tagname, or integer
expression.

Example(s)

StringFromIntg(26,2) returns “11010” (binary.

StringFromIntg(26,8) returns “32”—because
(base 8: 26 = 3*8 + 2)

StringFromIntg(26,10) returns “26” (decimal).

StringFromIntg(26,16) returns “1A” (hexadecimal).

StringFromReal() Function
In a script, you can convert an real value to a string value by using the
StringFromReal() function.

You can also specify to:

• Round the value to a specified precision.

• Pass the value in exponential notation.

This can be used, for example, to show text together with real values
or for showing real numbers with exponential notation.

Syntax

result = StringFromReal (number, precision, type)
InTouch HMI Scripting and Logic Guide

98 Chapter 6 Built-In Functions
Parameters

number
A literal value, analog tagname, or numeric expression.

precision
Specifies how many decimal places are to be used. A literal integer
value, integer tagname, or integer expression.

type
Specifies if the exponential notation is to be used. A literal string,
message tagname, or string expression.

“f” - Use floating point notation.

“e” - Use exponential notation with lowercase “e”.

“E” - Use exponential notation with uppercase “E”.

Example(s)

StringFromReal(263.355, 2,"f") returns “263.36”.

StringFromReal(263.355, 2,"e") returns “2.63e2”.

StringFromReal(263.55, 3,"E") returns “2.636E2”.

StringFromReal(0.5723, 2,"E") returns “5.72E-1”.

StringToIntg() Function
In a script, you can convert a value contained in a string to an integer
value by using the StringToIntg() function.

You can use this to read a value contained at the beginning of a string
into an integer tag for further mathematical operations.

Syntax

result = StringToIntg (string)

Parameters

string
A literal string, message tagname, or string expression.

Remarks

The function checks the first character of the string. If it is a number,
it attempts to read this and the following characters as an integer
number until a non-numeric character is met. The function ignores
leading spaces in the string.
InTouch HMI Scripting and Logic Guide

Converting Data Types99
Example(s)

StringToIntg("ABCD") returns 0.

StringToIntg("13.4 mbar") returns 13.

StringToIntg("Pressure is 13.4") returns 0.

To extract the first integer from a string (mtag) that is not at the
beginning and to store it in the integer tag itag, use the following
action script:

DIM i AS INTEGER;

DIM tmp AS INTEGER;

FOR i = 1 TO StringLen(mtag) {run variable i over the characters of mtag}

 tmp = StringASCII(StringMid(mtag, i, 1)) - 48; {detect ASCII value}

 IF (tmp>=0 AND tmp<10) THEN {if ASCII value represented "0" - "9"}

 itag = StringToIntg(StringMid(mtag, i, 0)); {set itag to value from that position

and exit loop}

 EXIT FOR;

 ENDIF;

NEXT;

StringToReal() Function
In a script, you can convert a value contained in a string to a real value
by using the StringToReal() function.

You can use this to read a value contained at the beginning of a string
into a real tag for further mathematical operations.

Note: This function also supports the exponential notation and
converts a string expression 1e+6 correctly to 1000000.

Syntax

result = StringToReal (string)

Parameters

string
A literal string, message tagname, or string expression.
InTouch HMI Scripting and Logic Guide

100 Chapter 6 Built-In Functions
Remarks

The function checks the first character of the string. If it is a number,
it attempts to read this and the following characters as a real number
until a non-numeric character is met. The function ignores leading
spaces in the string.

To extract the first real number from a string (message tag mtag) that
is not at the beginning and store it in the real tag rtag1, use the
following script:

DIM i AS INTEGER;

DIM tmp AS INTEGER;

FOR i = 1 TO StringLen(mtag) {run variable i over the characters of mtag}

 tmp = StringASCII(StringMid(mtag, i, 1)) - 48; {detect ASCII value}

 IF (tmp>=0 AND tmp<10) THEN {if ASCII value represented "0" - "9"}

 rtag = StringToReal(StringMid(mtag, i, 0)); {set rtag to value from that position

and exit loop}

 EXIT FOR;

 ENDIF;

NEXT;

Example(s)

StringToReal("ABCD") returns 0.

StringToReal("13.4 mbar") returns 13.4.

StringToReal("Pressure is 13.4") returns 0.

DText() Function
In a script, you can convert a Boolean value to a string value by using
the DText() function. You can use this function to use customized
message display animation links.

This function returns different string values depending on the value of
a Boolean value.

Syntax

result = Dtext (Boolean, stringtrue, stringfalse)

Parameters

Boolean
A literal Boolean value, discrete tagname, or Boolean expression.

stringtrue
The string to be returned if Boolean is true. A literal string value,
message tagname, or string expression.
InTouch HMI Scripting and Logic Guide

Working with InTouch Windows at Run Time101
stringfalse
The string to be returned if Boolean is false. A literal string value,
message tagname, or string expression.

Example(s)

This script returns “Running” if the discrete tagname switch is TRUE,
otherwise it returns “Stopped”.

DText(switch,"Running","Stopped")

This script returns the On and Off Messages of another discrete tag
switch2 depending on the value of the discrete tag
switch1.DText(switch1,switch2.OnMsg,switch2.OffMsg)

Working with InTouch Windows at Run Time
In a script, you can control the behavior and appearance of InTouch
windows. You can also write a script using QuickScripts to print
individual InTouch windows or the entire screen.

Expose Window Name Property
You can use GetWindowName script function to help the run-time
environment reduce scripting necessary to load windows with the
current implementation. It enables you to retrieve the name of the
window under which the function has been called.

GetWindowName() Function
Retrieves the name of the window under which the function has been
called.

Syntax

The syntax of the script function is as follows:

resultcode = GetWindowName(tagname);

Resultcode indicates the success or failure of the script function. The
resultcode can be a Discrete/Integer/Real data type. Resultcode will be
1 or 0, based on the success or failure of the script function:

• Resultcode is 1 when the script function is called103 from window
context.

• Resultcode is 0 when the script function is called from non-window
context.

Note: Configuration of the return value for the script function is
optional. This is similar to the existing script functions in InTouch.
InTouch HMI Scripting and Logic Guide

102 Chapter 6 Built-In Functions
Parameter

TagName
The tagname is the out parameter for this function. This will be a
message tag to retrieve the window name.

The parameter for the function can be any of the following:

• InTouch tag

• Dot field

• Local variable in the script

• Remote tag reference

• Galaxy reference

The default text loaded by the script browser is:

GetWindowName(TagName);

Note: “TagName” is a message tag or Remote Tag Reference (RTR)
which is of message type.

Return Value

The GetWindowName script function returns the window name with
the return value of 1 in the following scenarios:

• Window scripts (All Condition Types)

• Push button action scripts (All Condition Types)

The GetWindowName script function returns an empty string with
return value of 0 in the following scenarios:

• Application scripts

• Key scripts

• Condition scripts

• Data change scripts

• ActiveX event scripts

• Quick script functions (Synchronous and Asynchronous)
InTouch HMI Scripting and Logic Guide

Working with InTouch Windows at Run Time103
Showing a List of Open Windows
In a script, you can show a dialog box containing the list of InTouch
windows that are currently open using the OpenWindowsList()
function.

OpenWindowList() Function
Shows a dialog box containing the list of InTouch windows that are
currently open.

You can not use this function in an animation link.

Syntax

[result =]OpenWindowsList();

Example(s)

This script opens the Open Windows List dialog box and shows all
InTouch windows that are currently open.

OpenWindowsList()

Note: When the Use In-Memory Window Cache WindowViewer
option is enabled, closed windows may appear in the list created by the
OpenWindowList() function.

Checking If a Window is Open, Closed, or Exists
In a script, you check if an InTouch window is open, is closed, or does
not exist by using the WindowState() function.

WindowState() Function
Checks if an InTouch window is open, is closed, or does not exist.

Syntax

result = WindowState (windowname)

Parameters

windowname
Name of the window. A literal string value, message tagname, or
string expression.

Return Value

An integer value with the following meaning:

0 - InTouch window exists and is currently closed

1 - InTouch window exists and is currently open
InTouch HMI Scripting and Logic Guide

104 Chapter 6 Built-In Functions
2 - InTouch window does not exist

Example(s)

This script returns 0, if the InTouch window Main exists, but is not
open.

WindowState("Main")

Opening InTouch Windows
In a script, you can open an InTouch window by using one of the
following QuickScript functions:

Show() Function
Opens an InTouch window at its default position.

Syntax

Show windowname

Parameters

windowname
The name of the window to be opened. A literal string value,
message tagname, or string expression.

Use To

Show Open an InTouch window at the position
defined in its location settings.

ShowAt() Open an InTouch window at a specified
position. The opened window is centered on
the position. This function can also be used to
move an opened window.

ShowHome Open the InTouch window(s) you specified in
the Home Windows tab in the WindowViewer
Properties dialog box and closes any other
windows.

ShowTopLeftAt() Open an InTouch window at a specified
position. The opened window aligns its top left
corner to the position. This function can also
be used to move an opened window.
InTouch HMI Scripting and Logic Guide

Working with InTouch Windows at Run Time105
Example(s)

This script opens the window Main.

Show "Main";

This script opens the window with the name that is stored in the
wname message tag.

Show wname;

ShowAt() Function
Opens an InTouch window at a specified position. It also can move an
already open InTouch window to a specified position. The position is
the center point of the window.

Note: The window will not be centered if one of its edges is off-screen.

Syntax

ShowAt (windowname, xpos, ypos)

Parameters

windowname
The name of the window to be opened or moved.

xpos
The horizontal position in pixels that the window center is to be
moved to. A literal value, analog tagname, or numeric expression.

ypos
The vertical position in pixels that the window center is to be
moved to. A literal value, analog tagname, or numeric expression.

Example(s)

This script opens the window Main so that it is centered at the position
x:450, y:130.

ShowAt("Main",450,130);

This script opens the window called UserDialog and positions it, so
that its center is over the center position of the object that called this
function (for example a button).

ShowAt("UserDialog",$ObjHor,$ObjVer);
InTouch HMI Scripting and Logic Guide

106 Chapter 6 Built-In Functions
ShowHome() Function
Opens the InTouch window(s) you specified in the Home Windows tab
in the WindowViewer Properties dialog box and closes any other
windows.

Syntax

ShowHome;

ShowTopLeftAt() Function
Opens an InTouch window at a specified position. Can also be used to
move an open window.

Syntax

ShowTopLeftAt (windowname, xpos, ypos)

Parameters
The name of the window to be opened or moved.

xpos
The horizontal position in pixels that the window left edge is to be
moved to. A literal value, analog tagname, or numeric expression.

ypos
The vertical position in pixels that the window top edge is to be
moved to. A literal value, analog tagname, or numeric expression.

Example(s)

This script opens the window Main so that its top left corner is
positioned at x:450, y:130.

ShowTopLeftAt("Main",450,130);

Moving and Resizing a Window
In a script, you can move and resize an opened InTouch window with
the WWMoveWindow() function. The new position and new size apply
temporarily while the specified window is open.

WWMoveWindow() Function
Moves and resizes an opened InTouch window to a specified position
and specified size. The new position and new size apply temporarily
while the specified window is open.

Syntax

WWMoveWindow (windowname, xpos, ypos, xsize, ysize)
InTouch HMI Scripting and Logic Guide

Working with InTouch Windows at Run Time107
Parameters

windowname
The name of the window to be opened or moved.

xpos
The horizontal position in pixels that the window left edge is to be
moved to. A literal value, analog tagname, or numeric expression.

ypos
The vertical position in pixels that the window top edge is to be
moved to. A literal value, analog tagname, or numeric expression.

xsize
The horizontal size in pixels for the specified window. A literal
value, analog tagname, or numeric expression.

ysize
The vertical size in pixels for the specified window. A literal value,
analog tagname, or numeric expression.

Hiding InTouch Windows
In a script, you can hide InTouch windows by using either of the
following functions.

Hide() Function
Hides (closes) an InTouch window.

Syntax

Hide windowname;

Parameters

windowname
The name of the window to be hidden. A literal string value,
message tagname, or string expression.

Example(s)

This script hides the window called UserConfirmation.

Hide "UserConfirmation";

Use To

Hide Hide a specified window.

HideSelf Hide the currently active window.
InTouch HMI Scripting and Logic Guide

108 Chapter 6 Built-In Functions
HideSelf() Function
Hides (closes) the currently active InTouch window.

Note: This function can only be used in an action QuickScript.

Syntax

HideSelf;

Example(s)

HideSelf;

Changing the Color of a Window
In a script, you can change the color of an open InTouch window by
using the ChangeWindowColor() function.

ChangeWindowColor() Function
Changes the color of an open InTouch window and returns a result
code.

Syntax

Result = ChangeWindowColor (windowname, rValue, gValue, bValue)

Parameters

windowname
The name of the window for which the color is to be changed. A
literal string value, message tagname, or string expression.

rValue
The intensity of the red color. A literal integer value, integer
tagname, or integer expression in the range of 0 to 255.

gValue
The intensity of the green color. A literal integer value, integer
tagname, or integer expression in the range of 0 to 255.

bValue
The intensity of the blue color. A literal integer value, integer
tagname, or integer expression in the range of 0 to 255.

Return Value

A value with the following meaning:

0 - Failure, window is not defined or RGB value is out of range.

1 - Success.

2 - Failure. The window exists, but it is not open.
InTouch HMI Scripting and Logic Guide

Working with InTouch Windows at Run Time109
Printing Windows at Run Time
In a script, you can print individual InTouch windows or the entire
WindowViewer screen by using the PrintWindow() or PrintScreen()
functions. You can also set the printer you want to use with the
SetWindowPrinter() function.

SetWindowPrinter() Function
At run time, you can set the printer you want to use with the
SetWindowPrinter() function.

Note: The printer set with this function is also the printer that is used
with the PrintHT() function.

Syntax

SetWindowPrinter (printername)

Parameters

printername
The name of the printer, either as network share or as printer
name as it appears in its property window. A literal string value,
message tagname, or string expression.

Example(s)

In this example, PRTSRV1 is the node name and PRT22SW1 is the
share name given to the printer.

SetWindowPrinter("\\PRTSRV1\PRT22SW1");

In this example, Epson LX-300 is the name of the printer as seen in
the Properties window of the printer.

SetWindowPrinter("Epson LX-300");

In this example, MyPrinter is a message tag containing the name of an
installed windows printer or the path to a shared network printer.

SetWindowPrinter(MyPrinter);

Recommendations for Printing
The following list contains some issues to consider when printing.
These are applicable to printing a single window or printing the
WindowViewer screen.

• Open the window(s) to be printed before printing it. Otherwise
Windows and ActiveX Controls may not print correctly.

• You cannot print to the same printer that is currently printing
alarms.
InTouch HMI Scripting and Logic Guide

110 Chapter 6 Built-In Functions
• Avoid overlapping of windows and objects on the window when
printing.

• Use True Type fonts whenever possible. The default InTouch font
(System) is not a True Type font.

• For faster printing consider using a white background, fewer
objects, and text instead of graphics.

• WindowViewer waits a certain amount of time before the window
is sent to the printer queue. During this time, WindowViewer
updates any I/O values for that window in the background. To
change this waiting time, open the intouch.ini file and change or
add the following line (in milliseconds): PrintWindowWait=10000

PrintWindow() Function
In a script, you can print an InTouch window with the PrintWindow()
function.

Note: Scripts containing the PrintWindow() function cannot print the
following ArchestrA graphic controls within an InTouch window: ListBox,
DateTimePicker, CalenderControl, EditBox, CheckBox,
RadioButtonGroup, ComboBox, AlarmClient or TrendClient.

Syntax

[result =] PrintWindow (windowname, leftmargin, topmargin,

width, height, options);

Parameters

windowname
The name of the window to be printed. A literal string value,
message tagname, or string expression.

leftmargin
Left margin offset (in inches). A literal numeric value, analog
tagname, or numeric expression.

topmargin
Top margin offset (in inches). A literal numeric value, analog
tagname, or numeric expression.

width
Printout width (in inches). Set this value to 0 for largest aspect
ratio. A literal numeric value, analog tagname, or numeric
expression.

height
Printout height (in inches). Set this value to 0 for largest aspect
ratio. A literal numeric value, analog tagname, or numeric
expression.
InTouch HMI Scripting and Logic Guide

Working with InTouch Windows at Run Time111
options
A discrete value, 0 or 1, that is only used if width and height are 0.
A literal Boolean value, discrete tagname or Boolean expression.
Set to:

1 - The window is printed with the largest aspect ratio that is an
integer multiple of the window size.

0 - The window is printed with the largest aspect ratio that fits on
the page.

Note: If the window contains a bitmap, set options to 1 to prevent the
bitmap from being stretched.

Return Value

0 - Printing job is not queued successfully, or window does not exist

1 - Printing job is queued successfully

PrintScreen() Function
You can write a script to print the entire WindowViewer screen with
the PrintScreen() function.

Syntax

PrintScreen (ScreenOption, PrintOption)

Parameters

ScreenOption
Determines how much of the WindowViewer screen is to be
printed. A literal integer value, integer tagname, or integer
expression.

1 - Print the client area, no menus (default)

2 - Print the entire window area, including menus

PrintOption
Determines how the printed image is to be stretched to fit on the
printout.

• 1 - Best Fit:
image is stretched so that it fits either horizontally or vertically
on the printout without changing the aspect ratio. (default)

• 2 - Vertical Fit:
image is stretched so that it fits vertically on the printout
without changing the aspect ratio. The image may be cut off
horizontally.
InTouch HMI Scripting and Logic Guide

112 Chapter 6 Built-In Functions
• 3 - Horizontal Fit:
image is stretched so that it fits horizontally on the printout
without changing the aspect ratio. The image may be cut off
vertically.

• 4 - Stretch to Page:
image is stretched so that it fits horizontally and vertically on
the printout. The aspect ratio may change but the image is not
truncated.

• Invalid options, including 0, default to Best Fit.

Note: Popup windows that extend beyond the WindowViewer screen
area are cut off.

Example(s)

This script sends a printout of the current entire WindowViewer
screen area without menus to the printer queue. The printout contains
the screen area stretched so that it fills the printout dimensions.

PrintScreen(1,4);

PrintHT() Function
In a script, you can create a button to print the historical trend by
linking it to an action QuickScript that executes the PrintHT
QuickScript function.

Use the PrintWindow() function instead of the PrintHT() function
when you want to print the entire window instead of just the trend
chart.

Note: Printing the Historical Trend using the Print option or the
PrintHT() function will not print the x & y values. Use PrintWindow()
or PrintScreen() to print the x & y values.

Syntax

PrintHT(HistTrendTagname);

Parameter

HistTrendTagname
The history trend tag name for the history trend to be printed.
InTouch HMI Scripting and Logic Guide

Working with Date and Time Information113
Starting Tag Viewer
Tag Viewer is a run-time application that allows you to watch and
monitor tags and to modify tag values. For information about Tag
Viewer and its use, see the InTouch HMI Tag Viewer Guide.

LaunchTagViewer() Function
You can start Tag Viewer only when WindowViewer is running, and
only after Tag Viewer has been enabled in WindowMaker.

For information about enabling Tag Viewer, see Configuring General

WindowViewer Properties in the InTouch® HMI Application
Management and Extension Guide.

Syntax

LaunchTagViewer()

Remarks

The LaunchTagViewer() function can be executed from any script type
except the application scripts OnStartup and OnShutdown.

If Tag Viewer has not been enabled in WindowMaker, calling the
function will not start Tag Viewer and a warning message will appear
in the logger.

You must have adequate security privileges to start Tag Viewer.

Working with Date and Time Information
In a script, you can use system tags and QuickScript functions to use
system time and date settings in calculations. InTouch scripting also
supports calculations involving multiple time zones and Daylight
Saving Time.

Retrieving Numerical Date and Time Information
In a script, you can use a variety of numerical system tags and one
script function to retrieve information on the system time and date.
These tags and the script function can be used in other mathematical
operations. The following system tags and script functions are
available:

Use To

$Year Return the current year.

$Month Return the current month of the year.
InTouch HMI Scripting and Logic Guide

114 Chapter 6 Built-In Functions
$Year System Tag
Returns the current year number.

Syntax

$Year

Data Type

Integer (read only)

Example(s)

This script assigns the string “Welcome to xxxx” to the string Welcome
where xxxx is the current year.

Welcome = "Welcome to " + StringFromIntg($Year,10)

$Month System Tag
Returns the current month number.

Syntax

$Month

$Day Return the current day of the month.

$Hour Return the current hour of the day.

$Minute Return the current minute of the hour.

$Second Return the current second of the minute.

$Msec Return the current milliseconds.

$Time Return the time in milliseconds that have
passed since midnight in the local time zone.

$Date Return the number of whole days that have
passed since the 1st January 1970 in the local
time zone.

$DateTime Return the number of days (including fractions
of a day) that have passed since the 1st
January 1970 in the local time zone.

DateTimeGMT() Return the number of days (including fractions
of a day) that have passed since the 1st
January 1970 in Coordinated Universal Time
(UTC).

Use To
InTouch HMI Scripting and Logic Guide

Working with Date and Time Information115
Data Type

Integer (read only)

Example(s)

This script assigns the string “October” to the string MonthName if the
current month is 10.

IF $Month==10 THEN

MonthName="October";

ENDIF;

$Day System Tag
Returns the current day of the month.

Syntax

$Day

Data Type

Integer (read only)

Example(s)

This script assigns the string “It is a leap year!” to the string Msg2User
if the current date is the 29th February.

IF $Day==29 AND $Month==2 THEN

Msg2Usr="It is a leap year!";

ENDIF;

$Hour System Tag
Returns the current hour of the day.

Syntax

$Hour

Data Type

Integer (read only)

Example(s)

This script checks if it is 8 PM and the backup has not run yet
(expressed by the discrete tag BackupAlreadyRun), and if so, calls a
QuickFunction script called RunBackup() and sets the
BackupAlreadyRun flag to TRUE.
InTouch HMI Scripting and Logic Guide

116 Chapter 6 Built-In Functions
IF $Hour==20 AND BackupAlreadyRun==0 THEN

CALL RunBackup();

BackupAlreadyRun=1;

ENDIF;

$Minute System Tag
Returns the current minute of the hour.

Syntax

$Minute

Data Type

Integer (read only)

Example(s)

This script checks if it is 4:50 PM and if so, shows the window with the
name Shift End.

IF $Minute==50 AND $Hour==16 THEN

Show "Shift End";

ENDIF;

$Second System Tag
Returns the current second of the minute.

Syntax

$Second

Data Type

Integer (read only)

Example(s)

This script generates a sine wave function with an amplitude of 100
and a period of one minute.

100*Sin(6*$Second)

This script generates a series of 0’s and 1’s that change every second.

$second.00
InTouch HMI Scripting and Logic Guide

Working with Date and Time Information117
$Msec System Tag
Returns the current milliseconds.

Note: By default the InTouch updates all tags every 1000
milliseconds. Because of this, the $Msec system tag seems not to
change. If you increase the rate of update in the WindowViewer
properties, you can see the $Msec tag updating.

Syntax

$Msec

Data Type

Integer (read only)

$Time System Tag
Returns the number of milliseconds that have passed since midnight
in local time.

Syntax

$Time

Data Type

Integer (read only)

Example(s)

This script returns the number of seconds that have passed since
midnight.

$Time/1000

$Date System Tag
Returns the number of whole days that have passed since the 1st
January 1970.

Syntax

$Date

Data Type

Integer (read only)

Example(s)

This script returns the current time.

StringFromTime(($Date*86400)+($Time/1000),3);
InTouch HMI Scripting and Logic Guide

118 Chapter 6 Built-In Functions
$DateTime System Tag
Returns the number of days (including fractions) that have passed
since the 1st January 1970.

Syntax

$DateTime

Data Type

Real (read only)

Example(s)

This script returns the current time.

StringFromTime($DateTime*86400,3);

DateTimeGMT() Function
Returns the number of days (including fractions of a day) that have
passed since the 1st January 1970 in Coordinated Universal Time
(UTC).

Note: This function cannot be used in animation display links.

Syntax

result = DateTimeGMT();

Return Value

Number of days since 1st January 1970 in UTC. A literal real value.

Example(s)

This script returns the current date/time in UTC.

StringFromTime(DateTimeGMT() * 86400.0, 3);
InTouch HMI Scripting and Logic Guide

Working with Date and Time Information119
Retrieving String Date and Time Information
In a script, you can retrieve date and time information as strings. This
is useful for showing date or time on the screen or when calculations
on whole time/date strings are required.

You can use the following system tags and the script function.

$DateString System Tag
Returns the system date in short format as defined in the Regional
Settings of the local operating system.

Syntax

$DateString

Data Type

String (read only)

Example(s)

This script may return 4/28/2006 depending on the short date format
setting in the Regional Settings of the operating system.

$DateString

$TimeString System Tag
Returns the system time as defined in the Regional Settings of the
local operating system.

Syntax

$TimeString

Data Type

String (read only)

Example(s)

This script may return 02:40:37 PM depending on the time format
setting in the Regional Settings of the operating system.

$TimeString

Use To

$DateString Return the system date in short format.

$TimeString Return the system time.

UTCDateTime Return the UTC time and/or date and the time
zone of the local computer.
InTouch HMI Scripting and Logic Guide

120 Chapter 6 Built-In Functions
UTCDateTime() Function
Returns the UTC time, the UTC date and time, or the local time zone.

Syntax

result = UTCDateTime (format)

Parameters

format
Determines what content is returned. A literal string value,
message tagname, or string expression with the following possible
values:

UTC_SHORT - the function returns the UTC time

UTC_LONG - the function returns the UTC date and time

UTC_LOCAL - the function returns the name of the time zone as
set in the time zone settings of the local operating system

Any other values return the UTC date and time in default format (ddd
mm dd hh:mm:ss yyyy).

Example(s)

At 09:24 AM Monday January 6th 2003 in the Pacific time zone, the
UTCDateTime() function returns the following.

This script returns 17:24:05

UTCDateTime("UTC_SHORT")

This script returns 01/06/2003 17:24:05

UTCDateTime("UTC_LONG")

This script returns Pacific Standard Time -8:0: 1

UTCDateTime("UTC_LOCAL")

This script returns Mon Jan 06 17:24:05 2003.

UTCDateTime("Invalid")
InTouch HMI Scripting and Logic Guide

Working with Date and Time Information121
Converting Date and Time Information to Strings
In a script, you can convert date and time information to strings for
easier interpretation and display requirements. You can use the
following functions.

StringFromTime() Function
Converts a timestamp given in UTC time to local time and returns the
result as a string. This function takes Daylight Saving Time into
account.

Note: This function is equivalent to the StringFromGMTTimeToLocal()
function.

Syntax

result = StringFromTime (timestamp, format)

Parameters

timestamp
The number of seconds that have passed since midnight of the 1st
January 1970 in the UTC time zone. A literal integer value,
integer tagname, or integer expression.

format
Determines how the string result is shown. A literal integer value,
integer tagname, or integer expression in the range from 1 to 5
with following meaning:

1 - Shows the date according to the format set in the Regional
Settings of the local operating system

2 - Shows the time according to the format set in the Regional
Settings of the local operating system

3 - Shows the date and time as a 24 character string (ddd mmm dd
hh:mm:ss yyyy)

4 - Shows the day of the week in short form

5 - Shows the day of the week in long form

Use To

StringFromTime() Convert a UTC timestamp to local time
and to return as a time string.

wwStringFromTime() Convert a local time timestamp to UTC
time and returns it as a time string.

StringFromTimeLocal() Convert a timestamp as a time string.
InTouch HMI Scripting and Logic Guide

122 Chapter 6 Built-In Functions
Example(s)

This example assumes that the time zone on the local node is Pacific
Standard Time (PST, UTC-0800). The UTC time passed to the function
is 12:00:00 AM on Friday, January 2, 1970. Since PST is 8 hours
behind UTC, the function returns the following results.

This script returns “1/1/70”

StringFromTime(86400,1)

This script returns “04:00:00 PM”

StringFromTime(86400,2)

This script returns “Thu Jan 01 16:00:00 1970”

StringFromTime(86400,3)

This script returns “Thu”

StringFromTime(86400,4)

This script returns “Thursday”

StringFromTime(86400,5)

wwStringFromTime() Function
Converts a timestamp given in local time to UTC time and returns the
result as a string. This function takes Daylight Saving Time into
account.

Syntax

result = wwStringFromTime (timestamp, format)

Parameters

timestamp
The number of seconds that have passed since midnight of January
1, 1970 in the local time zone. A literal integer value, integer
tagname, or integer expression.

format
Determines how the string result is shown. A literal integer value,
integer tagname, or integer expression in the range from 1 to 5
with following meaning:

1 - Shows the date according to the format set in the Regional
Settings of the local operating system

2 - Shows the time according to the format set in the Regional
Settings of the local operating system
InTouch HMI Scripting and Logic Guide

Working with Date and Time Information123
3 - Shows the date and time as a 24 character string (ddd mmm dd
hh:mm:ss yyyy)

4 - Shows the day of the week in short form

5 - Shows the day of the week in long form

Example(s)

This example assumes that the time zone on the local node is Pacific
Standard Time (PST, UTC-0800). The local time passed to the function
is 04:00:00 PM on Thursday, January 1, 1970. Since PST is 8 hours
behind UTC, the function returns the following results.

This script returns “1/2/70”

wwStringFromTime(57600,1)

This script returns “12:00:00 AM”

wwStringFromTime(57600,2)

This script returns “Fri Jan 02 00:00:00 1970”

wwStringFromTime(57600,3)

This script returns “Fri”

wwStringFromTime(57600,4)

This script returns “Friday”

wwStringFromTime(57600,5)

StringFromTimeLocal() Function
Converts a timestamp to a time and returns the result as a string.

Syntax

result = StringFromTimeLocal (timestamp, format)

Parameters

timestamp
The number of seconds that have passed since midnight of January
1, 1970. A literal integer value, integer tagname, or integer
expression.

format
Determines how the string result is shown. A literal integer value,
integer tagname, or integer expression in the range from 1 to 5
with following meaning:

1 - Shows the date according to the format set in the Regional
Settings of the local operating system

2 - Shows the time according to the format set in the Regional
Settings of the local operating system
InTouch HMI Scripting and Logic Guide

124 Chapter 6 Built-In Functions
3 - Shows the date and time as a 24 character string (ddd mmm dd
hh:mm:ss yyyy)

4 - Shows the day of the week in short form

5 - Shows the day of the week in long form

Example(s)

This script returns “1/2/70”

StringFromTimeLocal(86400,1)

This script returns “12:00:00 AM”

StringFromTimeLocal(86400,2)

This script returns “Fri Jan 02 00:00:00 1970”

StringFromTimeLocal(86400,3)

This script returns “Fri”

StringFromTimeLocal(86400,4)

This script returns “Friday”

StringFromTimeLocal(86400,5)

Checking the Daylight Savings Time Status
In a script, you can check if daylight savings time is active by using the
wwIsDaylightSaving() function.

wwIsDaylightSaving() Function
Returns whether daylight savings time is currently active.

Syntax

result = wwIsDaylightSaving()

Return Value

A Boolean value with following meaning:

0 - Daylight savings time is not active.

1 - Daylight savings time is active.
InTouch HMI Scripting and Logic Guide

Interacting with Other Applications125
Interacting with Other Applications
In a script, you can interact with other Windows applications by using
various QuickScripts. For example, you can:

• Start an application, such as Notepad.

• Check an application title name.

• Check if a certain application is running.

• Activate a running application.

• Simulate keyboard strokes.

• Close, minimize or maximize an application window.

• Execute commands and exchange data with applications that
support DDE.

Starting a Windows Application
In a script, you can start a Windows application using the StartApp
command.

Syntax

StartApp appname;

Parameters

appname
Path and file name of the application you want to start. A literal
string value, message tagname, or string expression.

Note: You need to know the path and file name of the application. If
the application is in a directory that is part of the Windows PATH
environment variable, you only need to pass the file name (without
path).

Example(s)

This script starts Microsoft Calculator.

StartApp "calc"
InTouch HMI Scripting and Logic Guide

126 Chapter 6 Built-In Functions
Retrieving the Application Title of a Running
Application

In a script, you can find the application title or Windows task list
name of a specified running application by using the InfoAppTitle()
function. This information is, for example, required by InTouch
scripting for checking if the specified application is currently running
or for activating it.

InfoAppTitle() Function
Returns the application title or Windows task list name of a specified
application that is running.

Syntax

result = InfoAppTitle (appname)

Parameters

appname
Name of the application without the .exe extension. A literal string
value, message tagname, or string expression.

Example(s)

This script returns “Calculator”

InfoAppTitle("calc")

This script returns “Microsoft Excel”

InfoAppTitle("excel")

Checking If an Application is Running
In a script, you can check if a specific application is already running by
using the InfoAppActive() function. You need to know the application
title or Windows task list name first to be able to check if the specific
application is running.

InfoAppActive() Function
Returns the running status of an application.

Syntax

result = InfoAppActive (apptitle)
InTouch HMI Scripting and Logic Guide

Interacting with Other Applications127
Parameters

apptitle
The application title or Windows task list of the application for
which you want to query the running status. A literal string value,
message tagname, or string expression.

Return Value

A Boolean value indicating:

0 - The application is not running

1 - The application is running

Example(s)

This script queries for the application Notepad, and if it is already
running, activates it. Otherwise it launches a new instance of
Notepad. This way launching Notepad multiple times is avoided.

IF InfoAppActive(InfoAppTitle("Notepad"))==1

THEN

ActivateApp InfoAppTitle("Notepad");

ELSE

StartApp "Notepad";

ENDIF;

Activating a Running Windows Application
In a script, you can activate a running Windows application by using
the ActivateApp() function. This brings the specified application to the
foreground and gives it focus.

You need to do the following before activating a running Windows
application:

• Find the application title or Windows task list name. See
"Retrieving the Application Title of a Running Application" on
page 133.

• Ensure the Windows application is running. See "Checking If an
Application is Running" on page 134.

ActivateApp Function
Activates an already running Windows application.

Important: The ActivateApp() function does not work on 64-bit
versions of the Windows operating system.
InTouch HMI Scripting and Logic Guide

128 Chapter 6 Built-In Functions
Syntax

ActivateApp apptitle;

Parameters

apptitle
The application title or Windows task list name of the running
application you want to activate.

Example(s)

This script checks if a command prompt window is already open, and if
so, activates it. Otherwise it starts the command prompt window.

IF InfoAppActive(InfoAppTitle("cmd")) == 1 THEN

ActivateApp InfoAppTitle("cmd");

ELSE

StartApp "cmd";

ENDIF;

Sending Simulated Key Strokes to an Application
In a script, you can simulate pressing a sequence of keys on the
keyboard. You can use this, for example, to:

• Enter data automatically in an open application.

• Control any application (including the InTouch HMI).

SendKeys Function
Simulates a sequence of key strokes.

Important: The SendKeys() function does not work on 64-bit
versions of the Windows operating system.

Syntax
SendKeys sequence;

Parameters

sequence
The sequence of keys strokes to be simulated. A literal string
value, message tagname, or string expression.

In addition to regular characters on the keyboard (such as
alphanumeric characters) you can also specify control keys as a
code:

{BACKSPACE} - Simulates the Backspace key

{BREAK} - Simulates the Break key

{CAPSLOCK} - Simulates the Caps Lock key

{DELETE} - Simulates the Delete key (or {DEL})
InTouch HMI Scripting and Logic Guide

Interacting with Other Applications129
{DOWN} - Simulates Arrow Down key

{END} - Simulates the End key

{ENTER} - Simulates the Enter key (or ~)

{ESCAPE} - Simulates the ESC key (or {ESC})

{F1} .. {F12} - Simulate the F1 .. F12 keys

{HOME} - Simulates the Home key

{INSERT} - Simulates the Insert key

{LEFT} - Simulates the Arrow Left key

{NUMLOCK} - Simulates the Num Lock key

{PGDN} - Simulates the Page Down Key

{PGUP} - Simulates the Page Up key

{PRTSC} - Simulates the Print Screen key

{RIGHT} - Simulates the Arrow Right key

{TAB} - Simulates the Tab key

{UP} - Simulates the Up key

+ - Simulates the Shift key

use with parenthesis surrounding the key(s) you want to

press in combination with the Shift key.

^ - Simulates the Ctrl key

use with parenthesis surrounding the key(s) you want to

press in combination with the Ctrl key.

% - Simulates the Alt key

use with parenthesis surrounding the key(s) you want to

press in combination with the Alt key.

Remarks

Use the StartApp and/or ActivateApp() commands to activate another
application before sending simulated keys strokes to it.

Example(s)

This script simulates pressing the B key.

SendKeys "b";

This script simulates pressing the key combination Ctrl and P, which
can be used to initiate the Printing dialog box in another application.

SendKeys "^(p)";

This script simulates pressing F1 (which may open the help function),
pressing the Tab key (which may place the cursor in a search field),
entering HAL, and pressing the Enter key (which may initiate the
search).

SendKeys "{F1}{TAB}HAL{ENTER}";

This script simulates pressing Ctrl, Shift and the key 1, which is the
same as switching to WindowMaker. This powerful combination can be
used for developing self-modifying (dynamic) InTouch HMI
applications.

SendKeys "^(+(1))";
InTouch HMI Scripting and Logic Guide

130 Chapter 6 Built-In Functions
Closing, Minimizing or Maximizing a Windows
Application

In a script, you can close, minimize, or maximize another Windows
application by using the WWControl() command.

You need to do the following before closing, minimizing or maximizing
a Windows application:

• Find its application title or Windows task list name. See
"Retrieving the Application Title of a Running Application" on
page 133.

• Make sure that the Windows application is running. See "Checking
If an Application is Running" on page 134.

WWControl() Function
Restores, minimizes, maximizes, or closes a Windows application.

Syntax

WWControl (apptitle, control);

Parameters

apptitle
The application title or Windows task list name of the running
application you want to restore, minimize, maximize or close. A
literal string value, message tagname, or string expression.

control
Determines the action you want to take on the specified Windows
application. A literal string value, message tagname, or string
expression with following values:

Restore - activates and shows the application window

Minimize - activates and minimizes the application window

Maximize - activates and maximizes the application window

Close - closes the application

Remarks

To use this function in Windows Server 2003, you must be a member of
the Administrators group, the Performance Log Users group, or the
Performance Monitor Users group on the local computer or you must
have been delegated the appropriate authority to write to the registry.
InTouch HMI Scripting and Logic Guide

Interacting with Other Applications131
Example(s)

This script restores the calculator application if it is already running.

WWControl ("Calculator","Restore");

This script closes the WindowViewer.

WWControl (InfoAppTitle("View"),"Close");

Executing Commands and Exchanging Data using
DDE

You can write a script to interact with applications that support DDE.

WWExecute() Function
Sends a command to an application, executes it, and returns a status
result. You can use it to have Excel to run a macro.

Important: The WWExecute() function does not work on 64-bit
versions of the Windows operating system.

Syntax

Result = WWExecute (appname, topic, command)

Parameters

appname
The name of the application the command is sent to. A literal
string value, message tagname, or string expression.

topic
The name of the topic within the application that the command is
sent to. A literal string value, message tagname, or string
expression.

command
The command to be sent. A literal string value, message tagname,
or string expression.

Use To

WWExecute() Send and execute commands.

WWRequest() Read data from DDE items.

WWPoke() Write data to DDE items.
InTouch HMI Scripting and Logic Guide

132 Chapter 6 Built-In Functions
Return Value

A value of-1, 0, or 1 indicating the following:
-1 - command not executed successfully. Possible causes are the
application not running, the topic does not exist or the command
contains an error.

0 - command not executed successfully because the application is
busy.

1 - command executed successfully.

Example(s)

This script instructs Microsoft Excel to execute the macro Macro1 by
sending the command [Run(“Macro1”,0)] to Excel.

Macro="Macro1";

Command="[Run(" + StringChar(34) + Macro + StringChar(34) +

",0)]";

WWExecute("excel","system",Command);

WWRequest() Function
Reads data from an item of an application. You can use it, for example,
to read the value of a spreadsheet cell in Microsoft Excel.

Important: The WWRequest() function does not work on 64-bit
versions of the Windows operating system.

Syntax

Result = WWRequest(appname, topic, item, messagetag)

Parameters

appname
The name of the application. A literal string value, message
tagname, or string expression.

topic
The name of the topic within the application. A literal string value,
message tagname, or string expression.

item
The name of the item belonging to the topic and application. A
literal string value, message tagname, or string expression.

messagetag
A message tagname to retrieve the value of the item. The message
tagname value can be converted into an integer or real value by
using the StringToIntg() or StringToReal() functions.
InTouch HMI Scripting and Logic Guide

Interacting with Other Applications133
Return Value

A value of -1, 0, or 1 indicating the following:
-1 - data not read successfully. Possible causes are the application
not running or the topic or item do not exist.

0 - data not read successfully because the application is busy.

1 - data read successfully.

Example(s)

This script reads the value contained in Microsoft Excel book
Book1.xls, sheet Sheet1 in Row 1, Column 1 to the message tagname
MTag and puts the value in the real tagname CellValue.

Result = WWRequest("excel","[Book1.xls]sheet1", "r1c1",Mtag);

CellValue=StringToReal(MTag);

If you are using a non-English operating system, you may need to use
the StringReplace() function to change the contents of MTag before
converting it to a different data type. For example, for operating
systems that use a comma as a decimal separator, you may need to
replace all commas with decimal dots in MTag before converting it to a
real data type.

WWPoke() Function
Writes data to an item of an application. You can use it, for example, to
write the value into a spreadsheet cell in Excel.

Important: The WWPoke() function does not work on 64-bit versions
of the Windows operating system.

Syntax

result = WWPoke (appname, topic, item, string)

Parameters

appname
The name of the application. A literal string value, message
tagname, or string expression.

topic
The name of the topic within the application. A literal string value,
message tagname, or string expression.

item
The item name belonging to the topic and application. A literal
string value, message tagname, or string expression.
InTouch HMI Scripting and Logic Guide

134 Chapter 6 Built-In Functions
string
The value to be written. A literal string value, message tagname,
or string expression. You can use the StringFromIntg(),
StringFromReal() or Text() functions to convert the value of an
integer or real tagname to a message tagname.

Return Value

A value of-1, 0, or 1 indicating the following:
-1 - data not written successfully. Possible causes are the
application not running or the topic or item do not exist.

0 - data not written successfully because the application is busy.

1 - data written successfully.

Remarks

Do not use the WWPoke() or WWRequest() function to read and write
data between InTouch applications on different nodes or sessions. To
read and write data between InTouch applications, use Access Names

instead. See Setting Up Access Names in the InTouch® HMI Data
Management Guide.

Example(s)

This script puts the value of the real tagname CellValue in the
message tagname Mtag and writes the value to the spreadsheet cell
Row 1, Column 1 of sheet Sheet1 in Microsoft Excel book Book1.xls.

MTag = Text(CellValue,"0");

Result = WWPoke("excel","[Book1.xls]sheet1", "r1c1",Mtag);

Working with Files
You can write a script using various file management and access
operations.

Use To

FileCopy() Copy files.

FileDelete() Delete files.

FileMove() Move files.

FileReadFields(), FileWriteFields() Read/write csv data.

FileReadMessage(), FileWriteMessage() Read/write text data.
InTouch HMI Scripting and Logic Guide

Working with Files135
Managing Files
In a script, you can copy, delete or move files.

FileCopy() Function
Copies a source file to a destination file and returns a status result.
This function may take a longer time to execute and is executed in
multiple stages:

1 FileCopy() function is called and an immediate result is returned,
indicating success or failure of the file copy initialization.

2 FileCopy() function executes the copy procedure in the background,
and InTouch scripting continues execution while the file copying is
in progress. You can monitor the file copying progress with an
integer tag.

3 FileCopy() function returns a file copy result, indicating success or
failure of the file copy procedure.

If the destination folder is not available (i.e. another computer on the
network), the function waits for up to 10 seconds to time out, and then
posts a message in the Logger.

Note: Do not use the FileCopy() function in asynchronous
QuickFunctions.

Syntax

result = FileCopy (sourcefile, destfile, progresstag)

Parameters

sourcefile
Full path and file name of the file to be copied. A literal string
value, message tagname, or string expression. You can use the
wildcard characters (* and ?) in this parameter to copy just files
matching a specified criteria. The path name can also be a UNC
path name.

destfile
Full path and file name (or just path name) of the destination. A
literal string value, message tagname, or string expression. The
path name can also be a UNC path.
InTouch HMI Scripting and Logic Guide

136 Chapter 6 Built-In Functions
progresstag
Name of an integer tag enclosed in double quotes that will contain
a value indicating the file copy progress. A literal string value,
message tagname (such as a message tag containing the value
“IntTag.Name”) or string expression. The values have following
meaning:

0 - FileCopy() procedure is still in progress.

1 - FileCopy() procedure has completed successfully.

-1 - FileCopy() procedure completed with errors.

Return Value

A value of -1, 0, or 1 indicating the following:
1 - FileCopy() function successfully called.

0 - Error when calling the FileCopy() function because another
FileCopy() procedure is already in progress.

-1 - Error when calling the FileCopy() function because of a
non-existent source file or the destination is read only.

Example(s)

This script copies the file c:\MyData\output.log to the directory
d:\archive and renames the file to output.txt. The progress of the file
copy is written to the integer tag Monitor.

Status=FileCopy("c:\MyData\output.log","d:\archive\output.txt",

"Monitor");

This script copies all files with file ending .txt in the c:\ root directory
to the destination directory c:\Backup.

Status=FileCopy("c:*.txt", "c:\Backup", "Monitor");

This script copies a file whose full path and file name is contained in
the message tag LogFile to the destination directory c:\results\ and
renames it to logxxx.txt where xxx is a timestamp.

Status=FileCopy(LogFile, "c:\results\log" + $DateString +

$TimeString + ".txt", "Monitor");
InTouch HMI Scripting and Logic Guide

Working with Files137
FileDelete() Function
Deletes an individual file.

Syntax

result = FileDelete (filename)

Parameters

filename
The path name and file name of the file to delete. A literal string
value, message tagname, or string expression. UNC path names
are supported.

Remarks

Do not use the wildcard characters (* and ?) with the FileDelete()
function and do not use the FileDelete() function in asynchronous
QuickFunctions.

The FileDelete() function does not delete directories.

Return Value

A value indicating success or failure of the file deletion:
1 - file is deleted successfully

0 - file is not deleted successfully. Possible causes are attempts to
delete a read only or a non-existent file.

Example(s)

This script deletes the file c:\Data.txt and returns 1 if the file was
found and deleted successfully.

Status=FileDelete("c:\Data.txt");

FileMove() Function
Moves a source file to a destination file and returns a status result. It
can be also used to rename a file. This function may take a longer time
to execute and executes in multiple stages:

1 FileMove() function is called and an immediate result is returned,
indicating success or failure of the file move initialization.

2 FileMove() function executes the move procedure in the
background, InTouch scripting continues execution while the file
moving is in progress. You can monitor the file moving progress
with an integer tag.

3 FileMove() function returns a file move result, indicating success
or failure of the file moving procedure.

Do not use the FileMove() function in asynchronous QuickFunctions.
InTouch HMI Scripting and Logic Guide

138 Chapter 6 Built-In Functions
Syntax

result = FileMove (sourcefile, destfile, progresstag)

Parameters

sourcefile
Full path and file name of the file to be moved. A literal string
value, message tagname, or string expression. You can use the
wildcard characters (* and ?) in this parameter to move just files
matching a specified criteria. The path name can also be a UNC
path name.

destfile
Full path and file name (or just path name) of the destination. A
literal string value, message tagname, or string expression. The
path name can also be a UNC path.

progresstag
Name of an integer tag enclosed in double quotes that will contain
a value indicating the file moving progress. A literal string value,
message tagname (such as a message tag containing the value
“IntTag”) or string expression. The values have following meaning:

0 - FileMove() procedure is still in progress

1 - FileMove() procedure has completed successfully

-1 - FileMove() procedure completed with errors

Return Value

A value of-1, 0, or 1 indicating the following:
1 - FileMove() function successfully called

0 - Error when calling the FileMove() function because another
FileMove() procedure is already in progress

-1 - Error when calling the FileMove() function. Possible errors are
attempts to move a non-existent file.

Example(s)

This script moves the file c:\MyData\output.log to the directory
d:\archive and renames the file to output.txt. The progress of the file
moving is written to the integer tag Monitor.

Status=FileMove("c:\MyData\output.log","d:\archive\output.txt",

"Monitor");

This script moves all files with file ending .txt in the c:\ root directory
to the destination directory c:\Backup.

Status=FileMove("c:*.txt", "c:\Backup", "Monitor");
InTouch HMI Scripting and Logic Guide

Working with Files139
This script moves a file whose full path and file name is contained in
the message tag LogFile to the destination directory c:\results\ and
renames it to logxxx.txt where xxx is a timestamp.

Status=FileMove(LogFile, "c:\results\log" + $DateString +

$TimeString + ".txt", "Monitor");

Reading and Writing CSV Data
You can write a script to read and write data contained in a csv
(comma separated variable) file from and to a series of tagnames by
using the function FileReadFields() and FileWriteFields().

The functions FileReadFields() and FileWriteFields() support only the
comma as a delimiter.

FileReadFields() Function
Reads the values contained in a csv file into a series of tagnames. You
can use this function to load a set of tagname values.

Commas are the only supported delimiter.

This function can only be used for synchronous calls.

Syntax

[result =] FileReadFields (filename, offset, starttag,

numberoffields)

Parameters

filename
Name of the csv file to read the data from. A literal string value, a
message tagname or a string expression.

offset
Location (in bytes) in the file to start reading. A literal integer
value, integer tagname, or integer expression.

starttag
Name of the first tagname that receives the first read data item.
The tagname must be enclosed with double quotes and end in a
number, such as “MyTag1”. A literal string value, message
tagname (such as a message tagname containing the value
“MyTag1”), or a string expression.

numberoffields
Number of data items to read from the csv file. A literal integer
value, integer tagname, or integer expression. The first data item
is read into the tagname defined in the starttag parameter,
subsequent data items into tagnames with the incremented
numeral suffix of the starttag parameter (MyTag1, MyTag2,
MyTag3, ...).
InTouch HMI Scripting and Logic Guide

140 Chapter 6 Built-In Functions
Return Value

Optional new file offset (in byte) after reading the data. This can be
used to read the next set of data.

Example(s)

This script reads the values “Flour” to RecipeTag1, 27.23 to
RecipeTag2, 14 to RecipeTag3, and 1 to RecipeTag4, and returns the
new file offset—if the csv file c:\set.csv contains the following data:
Flour, 27.23,14,1 and if the following tags are defined:
RecipeTag1:message, RecipeTag2:real, Recipe3:integer,
RecipeTag4:discrete.

FileReadFields("c:\set.csv",0,"RecipeTag1",4);

FileWriteFields() Function
Writes the values contained in a series of tagnames to a csv file. You
can use this function to save a set of tagname values.

Commas are the only supported delimiter.

Syntax

[result =] FileWriteFields (filename, offset, starttag,

numberoffields)

Parameters

filename
Name of the csv file to write the data to. A new file is created if it
does not previously exist. A literal string value, a message
tagname, or a string expression.

offset
Location (in bytes) in the file to start writing to. Use -1 to write to
the end of the file (append). A literal integer value, integer
tagname, or integer expression.

starttag
Name of the first tagname that contains the first data item to be
written. The tagname must be enclosed with double quotes and
end in a number, such as “MyTag1”. A literal string value, message
tagname (such as a message tagname containing the value
“MyTag1”) or a string expression.

numberoffields
Number of data items to write to the csv file. A literal integer
value, integer tagname, or integer expression. The first data item
is written from the tagname defined in the starttag parameter to
the file, subsequent data items from tagnames with the
incremented numeral suffix of the starttag parameter (MyTag1,
MyTag2, MyTag3, ...).
InTouch HMI Scripting and Logic Guide

Working with Files141
Return Value

Optional new file offset (in byte) after writing the data. This can be
used to write the next set of data.

Example(s)

A series of InTouch tags is defined as follows:

This script writes the values contained in RecipeTag1 to RecipeTag4 to
the csv file c:\set.csv.

FileWriteFields("c:\set.csv",0,"RecipeTag1",4);

So that the file c:\set.csv will contain the following data:

Flour,27.23,14,1

Reading and Writing Text Data
You can write a script to read and write text data to and from a file by
using the FileReadMessage() and FileWriteMessage() functions. You
can either read/write a specified number of bytes or an entire line of
text (demarcated by a line feed character).

FileReadMessage() Function
Reads a specified number of bytes (or one line) of string data from a
file.

Syntax

[result =] FileReadMessage (filename, offset, messagetag,

charstoread)

Parameters

filename
Name of the file to read the data from. A literal string value, a
message tagname, or a string expression.

offset
Location (in bytes) in the file to start reading from. A literal
integer value, integer tagname, or integer expression.

Tagname Data Type Value

RecipeTag1 Message Flour

RecipeTag2 Real 27.23

RecipeTag3 Integer 14

RecipeTag4 Discrete 1
InTouch HMI Scripting and Logic Guide

142 Chapter 6 Built-In Functions
messagetag
Message tagname that receives the first line or number of bytes
from the file.

charstoread
Number of bytes to read from the file. Set it to 0 to read until the
next line feed (LF) character. A literal integer value, integer
tagname, or integer expression.

Return Value

Contains the new byte position after the read. You can use this for
subsequent reads from the file.

Example(s)

This script reads the first line of data in the file c:\Data\File.txt to the
message tagname MsgTag.

FileReadMessage ("c:\Data\File.txt",0,MsgTag, 0);

FileWriteMessage() Function
Writes a specified number of bytes (or one line) of string data to a file.

Syntax

[result =] FileWriteMessage (filename, offset, messagetag,

linefeed)

Parameters

filename
Name of the file to write the data to. A literal string value, a
message tagname, or a string expression.

offset
Location (in bytes) in the file to start writing to. Set it to -1 to write
data to the end of the file (append). A literal integer value, integer
tagname, or integer expression.

messagetag
Message tagname that contains the data to be written to the file.

linefeed
Specifies whether to write a line feed (LF) character after writing
the data to the file. Set to 1 to write a line feed character;
otherwise, set it to 0. A literal Boolean value, discrete tagname, or
Boolean expression.

Return Value

Contains the new byte position after the write. You can use this for
subsequent writes to the file.
InTouch HMI Scripting and Logic Guide

Retrieving System-Related Information143
Example(s)

This script writes the value of a message tagname MsgTag to the end
of the file c:\Data\File.txt.

FileWriteMessage("c:\Data\File.txt",-1,MsgTag,1);

Retrieving System-Related Information
In a script, you can retrieve system-related information using the
following QuickFunctions.

Retrieving the Node Name of the Computer
In a script, you can retrieve the node name of the computer with the
GetNodeName() function. This can be used, for example, to keep your
InTouch applications dynamic when working with access names.

GetNodeName() Function
Returns the node name of the computer.

Syntax

GetNodeName (messagetag, nodenum);

Parameters

messagetag
Message tagname that will contain the node name.

nodenum
Number of characters to retrieve from the node name. A literal
integer value, integer tagname, or integer expression in the range
of 0 to 131.

Example(s)

This script retrieves the node name and assigns it to the NodeName
message tagname.

GetNodeName(NodeName,131);

Use To

GetNodeName() Retrieve the node name of the computer.

InfoDisk() Retrieve disk space information.

InfoFile() Retrieve information about a file.

InfoResources() Retrieve information about the Windows
environment.
InTouch HMI Scripting and Logic Guide

144 Chapter 6 Built-In Functions
Retrieving Disk Space Information
In a script, you can retrieve disk space information by using the
InfoDisk() function. You can retrieve:

• The total size of the disk drive (in bytes or kilobytes).

• The available free space on the disk drive (in bytes or kilobytes).

You can also determine when or how often the information updates (in
an animation link) by specifying a trigger tag.

InfoDisk() Function
Returns either the total or free space on a local or network disk drive.

Syntax

result = InfoDisk (drive, infotype, trigger);

Parameters

drive
The drive letter for which you want to retrieve information. Only
the first character of a string is used. A literal string value,
message tagname, string expression.

infotype
Specifies the information type. A literal integer value, integer
tagname, or integer expression with following possible values:

1 - function returns total size of disk drive (in bytes)

2 - function returns free space of disk drive (in bytes)

3 - function returns total size of disk drive (in kilobytes)

4 - function returns free space of disk drive (in kilobytes)

trigger
A tagname (or expression) that acts as a trigger to recalculate the
disk information. If the trigger value changes the disk information
is recalculated. A discrete or analog taname, or a discrete or analog
expression.

Remarks

The trigger tag only has meaning when the InfoDisk() function is used
in an animation display link. If this function is used in a script, you
can specify any literal numeric value, analog tagname, or numeric
expression.

Example(s)

Use this script in an animation display link to show the free space of
disk drive C and update the information every minute.

InfoDisk("C", 4, $Minute)
InTouch HMI Scripting and Logic Guide

Retrieving System-Related Information145
Retrieving Information on a File or Directory
In a script, you can retrieve information on a specific file or directory
by using the InfoFile() function. By using different parameters you can
find:

• If the file exists.

• If the specified file name is actually a directory.

• The size (in bytes) of the file.

• The timestamp of the file or directory.

• The number of files that match a wildcard search.

InfoFile() Function
Returns various information on a file or directory.

Syntax

result = InfoFile (filename, infotype, trigger)

Parameters

filename
The full file name or directory name you want to retrieve
information about. A literal string value, message tagname, or
string expression. Can also include wildcard characters, such as “*”
and “?”.

infotype
The type of information you want to retrieve about the specified
file or directory. A literal integer value, integer tagname, or integer
expression with following values and meaning:

1 - Existence. The InfoFile() function returns 1 if the file exists, 2 if
the file is a directory and 0 if the file or directory does not exist.

2 - Size. The InfoFile() function returns the file size in bytes.

3 - Creation timestamp. The InfoFile() function returns the time
stamp as seconds that have passed since midnight January 1st
1970. Use the StringFromTimeLocal() function to convert this
value to a message timestamp.

4 - Wildcard Search Match. The InfoFile() function returns the
number of files that match a specified wildcard search.

trigger
A tagname (or expression) that acts as a trigger to recalculate the
file information. If the trigger value changes, the file information is
recalculated. A discrete or analog taname, or a discrete or analog
expression.
InTouch HMI Scripting and Logic Guide

146 Chapter 6 Built-In Functions
Remarks

The trigger tag only has meaning when the InfoFile() function is used
in an animation display link. If this function is used in a script, you
can specify any literal numeric value, analog tagname, or numeric
expression.

Example(s)

This script returns 1 if the file c:\data\log.txt exists.

InfoFile("c:\data\log.txt",1,$minute)

This script returns 14223 if the file c:\data\log.txt has a file size of
14223 bytes.

InfoFile("c:\data\log.txt",2,$minute)

This script returns 1138245266 if the file c:\data\log.txt was created
on 26th January 2006 at 11:14:26 AM.

InfoFile("c:\data\log.txt",3,$minute)

This script returns 14 if there are 14 files in the directory c:\data\
that have a txt ending.

InfoFile("c:\data*.txt",4,$minute)

Retrieving Information on the Windows
Environment

In a script, you can retrieve information on the Windows environment
by using the InfoResources() function. You can find:

• The free bytes of the paging file.

• The approximate number of Windows tasks.

InfoResources() Function
Returns the free bytes of the paging file or the approximate number of
Windows tasks.

Syntax

result = InfoResources (infotype, trigger)
InTouch HMI Scripting and Logic Guide

Retrieving InTouch Related Information147
Parameters

infotype
The type of information you want to retrieve about the Windows
environment. A literal integer value, integer tagname, or integer
expression with following values and meaning:

1 - Free bytes of paging file.

2 - Approximate number of open Windows tasks. This can be used
as measurement for the system load.

trigger
A tagname (or expression) that acts as a trigger to retrieve the
system information. If the trigger value changes the system
information is retrieved again. A discrete or analog taname or a
discrete or analog expression.

Remarks

The trigger tag only has meaning when the InfoResources() function is
used in an animation display link. If this function is used in a script,
you can specify any literal numeric value, analog tagname, or numeric
expression.

Example(s)

This script retrieves the approximate number of Windows tasks and, if
used in an animation display link, updates the information every
second.

InfoResources(2,$second);

Retrieving InTouch Related Information
In a script, you can retrieve InTouch related information using these
functions.

Use To

InfoInTouchAppDir() Get information on the directory of the
InTouch application you are developing.

InTouchVersion() Get information on the InTouch version.
InTouch HMI Scripting and Logic Guide

148 Chapter 6 Built-In Functions
Retrieving the Name of the InTouch Application
Directory

In a script, you can retrieve the name of the directory that your
InTouch application is running in with the InfoInTouchAppDir()
function. This function is useful to locate any external files that you
include to ship with your InTouch application.

InfoInTouchAppDir() Function
Returns the current InTouch application directory.

Syntax

result = InfoInTouchAppDir();

Return Value

A message tagname to contain the directory of the currently running
InTouch application.

Remarks

The application directory name may be truncated when passed to a
message tagname or shown in an animation link due to the 131
characters limitation.

Example(s)

This script may return c:\documents and settings\user1\my
documents\my intouch applications\packaging.

InfoInTouchAppDir()

Retrieving the InTouch Version
In a script, you can retrieve the version number of the InTouch
application you are currently running by using the InTouchVersion()
function.

InTouchVersion() Function
Returns the complete InTouch version number or just parts of it.

Syntax

result = InTouchVersion (infotype);
InTouch HMI Scripting and Logic Guide

Security-Related Scripting149
Parameters

infotype
Specifies how the version information is returned. A literal integer
value, integer tagname, or integer expression with the following
meaning:

0- function returns the whole version number

1- function returns just the major version number

2- function returns just the minor version number

3- function returns just the patch level

4- function returns just the build level

Example(s)

Security-Related Scripting
You can add and manage security within your InTouch application
with various QuickScript functions and system tags. For more
information about security functions, see Securing InTouch in the

InTouch® HMI Application Management and Extension Guide.

Logging On and Off
You can use the following functions and system tags to log on and log
off.

Function Possible result

InTouchVersion(0) 10.5.1626.0521.0045.0012

InTouchVersion(1) 10

InTouchVersion(2) 5

InTouchVersion(3) 0

InTouchVersion(4) 1626

Use To

AttemptInvisibleLogon() Log on a user by supplying
authentication data in the
parameters.

LogonCurrentUser() Log on the currently logged on
Windows user (if authentication
mode is "OS").
InTouch HMI Scripting and Logic Guide

150 Chapter 6 Built-In Functions
For more information about security functions, see Securing InTouch

in the InTouch® HMI Application Management and Extension Guide.

Changing and Setting Password
You can use the following functions and system tags to change
password:

For more information about security functions, see Securing InTouch

in the InTouch® HMI Application Management and Extension Guide.

Specifying and Configuring Users
You can use the following system tag to specify and configure users.

For more information about security functions, see Securing InTouch

in the InTouch® HMI Application Management and Extension Guide.

PostLogonDialog() Show the Logon dialog box.

Logoff() Log off the current user.

$PasswordEntered Set a password.

$OperatorEntered Set a valid user name.

$OperatorDomainEntered Set a valid user domain name (if
authentication mode is "OS").

Use To

Use To

ChangePassword() Call the Change Password dialog box
for the currently logged on user.

$ChangePassword Call the Change Password dialog box
for the currently logged on user.

Use To

$ConfigureUsers Call the Configure Users dialog box.
InTouch HMI Scripting and Logic Guide

Security-Related Scripting151
Managing Security and Other Information
You can use the following system tags and functions to manage
security.

For more information about security functions, see Securing InTouch

in the InTouch® HMI Application Management and Extension Guide.

Use To

$AccessLevel Retrieve the access level of the
currently logged in user.

AddPermission() Assign access levels to a certain
user group (local/domain).

GetAccountStatus() Retrieve account information
(password expiration, lock out,
disable flags).

$InactivityTimeout Indicate the time that elapses
before the user is automatically
logged off.

$InactivityWarning Indicate the time for the time-out
warning.

InvisibleVerifyCredentials() Retrieve InTouch access level
information of an OS user.

IsAssignedRole() See if the currently logged on user
has the specified user role.

QueryGroupMembership() See if the currently logged on user
is a member of a specified user
role.
InTouch HMI Scripting and Logic Guide

152 Chapter 6 Built-In Functions
Miscellaneous Scripting
InTouch scripting supports sound output so that you can associate
human machine interaction with sounds. InTouch scripting also
supports getting and setting properties of Wizards.

Playing Sound Files from an InTouch Application
In a script, you can associate events and conditions with specific
sounds. For example, you could associate a warning dialog box or a
critical condition with a warning sound.

PlaySound() Function
Plays a sound from a wave file or a Windows default sound.

Syntax

Playsound (soundname, flag)

Parameters

soundname
The name of the sound or wave file. A literal string value, message
tagname, or string expression. If the sound is defined as a name, it
must be defined in the Win.ini file under the [Sounds] section, for
example MC=”c:\test.wav”

flag
Specifies how the sound is played. A literal integer value, integer
tagname, or integer expression with the following meanings:

0 - Play sound one time synchronously (script execution waits until
sound has finished playing).

1 - Play sound one time asynchronously (script execution does not
wait until sound has finished playing).

9 - Play sound continuously (until the PlaySound() function is
called again).

Example(s)

This script plays the sound of the file c:\welcome.wav one time and
holds script execution until it has finished playing.

PlaySound("c:\welcome.wav",0);

This script plays the sound Alert continuously. In the win.ini file
[Sounds] section you need to associate the sound name Alert with a
sound file, such as:

Alert=c:\alert.wav.

PlaySound("Alert",9);
InTouch HMI Scripting and Logic Guide

Miscellaneous Scripting153
Getting and Setting Properties of Wizards
Some wizards such as the Distributed Alarm Object and Windows
Controls contain set or read properties. These properties could be
values in a text box or the check status of a check box.

In a script, you access these properties through the following
functions.

See the wizard description for a list of supported properties.

Here is how to set and read these properties in a generic way.

GetPropertyD() Function
Reads a discrete property in a wizard and returns a success code.

Syntax

result = GetPropertyD (controlname.property, dtag)

Parameters

controlname
The name of a wizard that supports properties. A literal string
value, message tagname, or string expression.

property
The discrete property of the wizard that is to be read. Together
with controlname can be a literal string value, message tagname,
or string expression.

dtag
The discrete tagname that will receive the discrete property value.

Return Value

An integer error code. For more information about the error codes, see

Understanding Windows Controls Error Messages in the InTouch®
HMI Visualization Guide.

Use To

SetPropertyD(), GetPropertyD() Set or read discrete properties.

SetPropertyI(), GetPropertyI() Set or read integer properties.

SetPropertyM(), GetPropertyM() Set or read message properties.
InTouch HMI Scripting and Logic Guide

154 Chapter 6 Built-In Functions
Example(s)

With a check box wizard Checkbox1 and a discrete tagname dtag you
can check the visibility of the check box with the following script
function:

result=GetPropertyD("Checkbox1.visible",dtag);

This script sets dtag to 1, if the check box wizard is visible; otherwise,
it sets dtag to 0.

SetPropertyD() Function
Sets a discrete property in a wizard and returns a success code.

Syntax

result = SetPropertyD(controlname.property, Boolean)

Parameters

controlname
The name of a wizard that supports properties. A literal string
value, message tagname, or string expression.

property
The discrete property of the wizard that is to be set. Together with
controlname can be a literal string value, message tagname, or
string expression.

Boolean
The Boolean value to pass to the wizard property. A literal Boolean
value, discrete tagname or Boolean expression.

Return Value

An integer error code. For more information about the error codes, see

Understanding Windows Controls Error Messages in the InTouch®
HMI Visualization Guide.

Example(s)

With a check box wizard Checkbox1 and a discrete tagname dtag you
can control the visibility of the check box with the following script
function:

result=SetPropertyD("Checkbox1.visible",dtag);

If you set dtag to 0 and call the script function above, the check box
wizard becomes invisible.
InTouch HMI Scripting and Logic Guide

Miscellaneous Scripting155
GetPropertyI() Function
Reads an integer in a wizard and returns a success code.

Syntax

result = GetPropertyI (controlname.property, itag)

Parameters

controlname
The name of a wizard that supports properties. A literal string
value, message tagname, or string expression.

property
The integer property of the wizard that is to be read. Together with
controlname can be a literal string value, message tagname, or
string expression.

itag
The integer tagname that will receive the integer property value.

Return Value

An integer error code. For more information about the error codes, see

Understanding Windows Controls Error Messages in the InTouch®
HMI Visualization Guide.

Example(s)

With a radio button wizard Radiobutton1 and an integer tagname itag
you can check the currently selected item in the radio button group
with the following script function:

result=GetPropertyI("Radiobutton1.value",itag);

This script sets itag to 1 (2, 3, ...) , if the first (second, third, ...) radio
button is selected.

SetPropertyI() Function
Sets an integer property in a wizard and returns a success code.

Syntax

result = SetPropertyI (controlname.property, integer)

Parameters

controlname
The name of a wizard that supports properties. A literal string
value, message tagname, or string expression.

property
The integer property of the wizard that is to be set. Together with
controlname can be a literal string value, message tagname, or
string expression.
InTouch HMI Scripting and Logic Guide

156 Chapter 6 Built-In Functions
integer
The integer value to pass to the wizard property. A literal integer
value, integer tagname, or integer expression.

Return Value

An integer error code. For more information about the error codes, see

Understanding Windows Controls Error Messages in the InTouch®
HMI Visualization Guide.

Example(s)

With a radio button wizard Radiobutton1 you can set the 2nd radio
button with the following script function:

result=SetPropertyI("Radiobutton1.value",2);

GetPropertyM() Function
Reads a message property in a wizard and returns a success code.

Syntax

result = GetPropertyM (controlname.property, mtag)

Parameters

controlname
The name of a wizard that supports properties. A literal string
value, message tagname, or string expression.

property
The message property of the wizard that is to be read. Together
with controlname can be a literal string value, message tagname,
or string expression.

mtag
The message tagname that will receive the message property
value.

Return Value

An integer error code. For more information about the error codes, see

Understanding Windows Controls Error Messages in the InTouch®
HMI Visualization Guide.

Example(s)

With a check box wizard Checkbox1 and a message tagname mtag you
can check the caption of the check box with the following script
function:

result=GetPropertyM("Checkbox1.caption",mtag);

This script sets mtag to the caption of the check box.
InTouch HMI Scripting and Logic Guide

Miscellaneous Scripting157
SetPropertyM() Function
Sets a message property in a wizard and returns a success code.

Syntax

result = SetPropertyM (controlname.property, message)

Parameters

controlname
The name of a wizard that supports properties. A literal string
value, message tagname, or string expression.

property
The message property of the wizard that is to be set. Together with
controlname can be a literal string value, message tagname, or
string expression.

message
The message value to pass to the wizard property. A literal string
value, message tagname, or string expression.

Return Value

An integer error code. For more information about the error codes, see

Understanding Windows Controls Error Messages in the InTouch®
HMI Visualization Guide.

Example(s)

With a check box wizard Checkbox1 you can set the caption of the
check box wizard dynamically with the following script function:

result=SetPropertyM("Checkbox1.caption","Start Engine 1");

This script sets the caption of the check box Checkbox1 to “Start
Engine 1”.
InTouch HMI Scripting and Logic Guide

158 Chapter 6 Built-In Functions
InTouch HMI Scripting and Logic Guide

159
Chapter 7

Scripting with OLE Objects

You can use OLE objects to extend the functionality of an InTouch
HMI application. With OLE objects, you can:

• Create popup dialog boxes for the operator interface.

• Access operating system functions, such as the Control Panel.

• Make data from the Manufacturing Execution Module available for
processing within the InTouch HMI. See the Manufacturing
Execution Module documentation.

Creating, Validating, and Releasing OLE
Objects

You can create and validate OLE objects for use in InTouch scripts.
After using an OLE object you can release it to free up memory.

Use the following functions to create, validate, and release OLE
objects.

• OLE_CreateObject() Function

• OLE_IsObjectValid() Function

• OLE_ReleaseObject() Function
InTouch HMI Scripting and Logic Guide

160 Chapter 7 Scripting with OLE Objects
OLE_CreateObject() Function
Before you can reference an OLE object in a script, you must create it.
When you do this you receive a pointer that references the OLE object.

In a script, you can create an OLE object and assign a pointer by using
the OLE_CreateObject() function.

Syntax

OLE_CreateObject(%pointer, classname);

Parameters

%pointer
The name of your choice for the pointer to the OLE object. It can
contain alphanumeric characters (A-Z, 0-9) and underscore. It is
case-insensitive.

classname
The name of the OLE class. The class name is case-sensitive. A
literal string value, message tagname, or string expression.

Remarks

If you use the same object name to create another object, the object is
updated to reference the new OLE class. It is released from the old
OLE class.

Example(s)

This script creates an OLE object called %WShell that references the
class Wscript.Shell.

OLE_CreateObject(%WShell, "Wscript.Shell");

OLE_IsObjectValid() Function
In a script, you can verify that an OLE object is valid by using the
OLE_IsObjectValid() function. This is not a required step for working
with OLE objects, but it is recommended to make sure that you do not
come across problems when working with OLE objects.

Syntax

result = OLE_IsObjectValid(%pointer)
InTouch HMI Scripting and Logic Guide

Creating, Validating, and Releasing OLE Objects161
Arguments

%pointer
The pointer referencing an OLE object that is to be tested.

result
A Boolean value indicating the following:

0 - The OLE object the pointer is referencing is invalid.

1 - The OLE object the pointer is referencing is valid.

Example(s)

This script creates an OLE object based on the Wscript.Shell class and
creates a pointer %WS to reference it. isvalid is a discrete tag that is
TRUE if the OLE object is created successfully. Otherwise it is
FALSE.

OLE_CreateObject(%WS, "Wscript.Shell");

isvalid = OLE_IsObjectValid(%WS);

OLE_ReleaseObject() Function
After you have used an OLE object in a script, you can release it and
delete its pointer to free up system resources. After you release an
OLE object you cannot use its pointer to access properties and methods
of the associated OLE class.

Syntax

OLE_ReleaseObject(%pointer);

Arguments

%pointer
Name of the pointer that references the OLE Object. It can contain
alphanumeric characters (A-Z, 0-9) and underscore. It is
case-insensitive.

Example(s)

This script releases the OLE object associated with the pointer
%WShell and deletes the pointer %WShell.

OLE_ReleaseObject(%WShell);
InTouch HMI Scripting and Logic Guide

162 Chapter 7 Scripting with OLE Objects
Using OLE Object Properties and Methods
In a script, you can use pointers to read and write values from and to
OLE properties. You can also use the pointer to call OLE methods. The
properties and methods available depend on the OLE object.

Accessing the Properties of an OLE Object
In a script, you can access the properties of an OLE object as you
would in most programming languages. Properties are usually
identified by using the dot “.” operator.

Note: When you use OLE object properties in a script, make sure that
their references do not exceed 98 characters, including leading “%”.
Keep OLE pointer names as short as possible.

Reading an OLE Object Property
In a script, you can read an OLE object property by assigning the
property to a tag. You cannot use a direct reference to an OLE object
property in an animation display link.

Syntax

tagname = %pointer.property;

Arguments

%pointer
The pointer that references the OLE object. Must be created with
OLE_CreateObject() function or assigned to another pointer before
reading a property.

property
The name of the property to be read.

tagname
The tag to write the value to.

Example(s)

This script creates an OLE object based on the System.Random OLE
class, creates a pointer %SR to reference it, and assigns the value of
the .NextDouble property of the Math.Random OLE object to a real
tagname randtag.

At run time the real tagname Randtag receives a random double float
value between 0 and 1.

OLE_CreateObject(%SR,"System.Random");

randtag = %SR.NextDouble;
InTouch HMI Scripting and Logic Guide

Using OLE Object Properties and Methods163
Writing to an OLE Object Property
In a script, you can write a value to an OLE object property by
assigning a value to the property.

Syntax

%pointer.property = value;

Arguments

%pointer
The pointer that references the OLE object. Must be created with
OLE_CreateObject() function or assigned to another pointer before
writing to a property.

property
The name of the property to be written to.

value
The value to be written to the property. It can be a literal value,
tagname or expression. Writing to an OLE property from an
animation input link directly is not supported.

Calling Methods of an OLE Object
In a script, you can call OLE object methods.

Syntax

%pointer.method(parameters);

Arguments

%pointer
The pointer that references the OLE object. Must be created with
OLE_CreateObject() function or assigned to another pointer before
calling a method.

method
The name of the method that is part of the OLE object.

parameters
A list of parameters to pass to the method. These parameters must
be separated by comma. Literal values, tagnames or expressions.
InTouch HMI Scripting and Logic Guide

164 Chapter 7 Scripting with OLE Objects
Example(s)

This script creates an OLE object based on the OLE class
Shell.Application, creates a pointer %sa to the OLE object and calls
the method .MinimizeAll(). This method minimizes all windows on
your desktop.

OLE_CreateObject(%SA,"Shell.Application");

%SA.MinimizeAll();

Note: Optional parameters are not allowed in OLE InTouch HMI
scripting. All parameters must be specified.

Assigning Multiple Pointers to the Same OLE
Object

In a script, you can assign multiple pointers to the same OLE object by
using the equals sign.

Syntax

%newpointer = %pointer

Arguments

%pointer
The name of the pointer that already references a created OLE
object.

%newpointer
The name of a new pointer that should reference the same OLE
object. It can contain alphanumeric characters (A-Z, 0-9) and
underscore. It is case-insensitive.

Example(s)

This script creates an OLE object based on the Wscript.Shell class and
creates a pointer %WS to reference it. The pointer %WS2 when set to
%WS points to the same OLE object. It can be used to read from or
write to properties and call methods of the same OLE object.

OLE_CreateObject(%WS,"Wscript.Shell");

%WS2=%WS;

Note: You can use message tagnames in connection with pointers. If
you assign a message tagname to a pointer, it can get an ID value. You
can use it to create more pointers to the same OLE object.
InTouch HMI Scripting and Logic Guide

Troubleshooting OLE Errors165
Troubleshooting OLE Errors
In a script, you can use OLE functions to troubleshoot OLE errors.

OLE_GetLastObjectError() Function
This function returns the error number of the last OLE error.

Syntax

errnum = OLE_GetLastObjectError();

Arguments

errnum
The number of the last OLE error.

OLE_GetLastObjectErrorMessage() Function
This function returns the error message of the last OLE error.

Syntax

errmsg = OLE_GetLastObjectErrorMessage();

Arguments

errmsg
The error message of the last OLE error.

Function Description

OLE_GetLastObjectError()
Function

Get the error number of the
last OLE error.

OLE_GetLastObjectErrorMessage()
Function

Get information on the last
OLE error.

OLE_ResetObjectError() Function Reset the last error.

OLE_ShowMessageOnObjectError()
Function

Show or hide the OLE error
message dialog box.

OLE_IncrementOnObjectError()
Function

Count the number of OLE
errors with an InTouch
HMI tagname.
InTouch HMI Scripting and Logic Guide

166 Chapter 7 Scripting with OLE Objects
OLE_ResetObjectError() Function
In a script, use the OLE_ResetObjectError() function to reset the last
OLE error so that the last OLE error number is set to zero and last
OLE error message is set to blank.

This can be used for identifying any errors in a batch of OLE functions.

Syntax

OLE_ResetObjectError()

OLE_ShowMessageOnObjectError() Function
By default, when an OLE error occurs, an error message dialog box is
displayed.

In a script, you can specify whether or not to display the error message
dialog box by using the function OLE_ShowMessageOnObjectError().

Syntax

OLE_ShowMessageOnObjectError(Boolean)

Arguments

Boolean
A value that determines if an OLE error message dialog box is
displayed or not. A literal Boolean value, discrete tagname or
Boolean expression with following meanings:

0 - no OLE error message dialog box is displayed when an OLE
error occurs

1 - an OLE error message dialog box is displayed when an OLE
error occurs

Example(s)

This script suppresses all OLE error message dialog boxes. When OLE
errors occur, no error message dialog boxes are displayed.
OLE_ShowMessageOnObjectError(0);

OLE_IncrementOnObjectError() Function
In a script, you can use the OLE_IncrementOnObjectError() function
to designate an integer tagname as counter for the number of OLE
errors.

Syntax

OLE_IncrementOnObjectError(integertag)
InTouch HMI Scripting and Logic Guide

Things You Can Do with OLE167
Parameters

integertag
The tagname that acts as a counter.

Remarks

If OLE error message dialog boxes are displayed, the counter tagname
is only incremented after the OLE error message dialog box is closed.

Example(s)

This script designates the integer tagname errorcount as error
counter, hides the error message dialog boxes and attempts to create
an OLE object based on an invalid OLE class name. This creates an
error and the tagname value errorcount is incremented to 1.

errorcount = 0;

OLE_IncrementOnObjectError(errorcount);

OLE_ShowMessageOnObjectError(0);

OLE_CreateObject(%WS,"InVaLiD.cLaSs.nAmE");

Things You Can Do with OLE
You can use the following scripts to get an idea of the powerful
functionality you can add to an application using OLE objects.

Produce Random Numbers
In a script, use the following commands to produce a random number
between 0 and 255:

OLE_CreateObject(%SR,"System.Random");

randtag = (%SR.NextDouble)*255;

Create User Interface Dialog Boxes
In a script, use the following commands to produce a user interface
dialog box:

dim DlgBody as message;

dim DlgTitle as message;

dim Style as integer;

dim Result as integer;

DlgBody = "Do you want to open the valve ’MR-3-FF’?";

DlgTitle = "Confirm Opening Valve MR-3-FF";

Style = 48;
InTouch HMI Scripting and Logic Guide

168 Chapter 7 Scripting with OLE Objects
OLE_CreateObject(%WS,"Wscript.Shell");

result = %WS.Popup(DlgBody,1,DlgTitle,Style);

This example creates the following user interface dialog box.

The Style tagname determines which icon and which buttons appear
on the dialog box. Use the following values:

To use a particular button, add one of the following values to the Style
value:

Icon Style Value

(no icon) no icon 0

Error icon 16

Question mark icon 32

Warning icon 48

Information icon 64

Value Style

0 Only OK button

1 OK and Cancel buttons

2 Abort, Retry and Ignore buttons

3 Yes, No and Cancel buttons

4 Yes and No buttons

5 Retry and Cancel buttons

6 Cancel, Try Again and Continue buttons
InTouch HMI Scripting and Logic Guide

Things You Can Do with OLE169
The Result tagname contains the button number the user clicked. This
can be used for conditional branching in your InTouch script.
Following result codes are possible:

Open Windows Date and Time Properties Panel
In a script, use the following commands to open the Windows
Date/Time Properties panel:

OLE_CreateObject(%WP,"Shell.Application");

%WP.SetTime();

You can do similar tasks by calling different methods and passing
them to the referenced OLE object:

Result Value Meaning

1 OK button was pressed

2 Cancel button was pressed

3 Abort button was pressed

4 Retry button was pressed

5 Ignore button was pressed

6 Yes button was pressed

7 No button was pressed

10 Try again button was pressed

11 Continue button was pressed

This Method Opens The Panel

TrayProperties() Tray properties

FileRun() File Run dialog box

FindFiles() Find Files dialog box

FindComputer() Find Computer dialog box

ShutdownWindows() Shutdown Windows panel
InTouch HMI Scripting and Logic Guide

170 Chapter 7 Scripting with OLE Objects
Read and Write to the Registry
In a script, you can use OLE to read from and write to the Windows
registry by:

• Creating an OLE object based on the Windows class Wscript.Shell.

• Using the RegRead() and RegWrite() methods of the OLE object.

For example, these commands read the installed version of the
InTouch HMI directly from the registry key and store the value in the
rkey message tagname:

OLE_CreateObject(%WS,"Wscript.Shell");

rkey =

%WS.RegRead("HKLM\SOFTWARE\Wonderware\InTouch\Installation\Ve

rsion");

These commands write the value 1 to the registry key that determines
if file extensions are hidden for the currently logged on user:

OLE_CreateObject(%WS,"Wscript.Shell");

%WS.RegWrite("HKCU\Software\Microsoft\Windows\CurrentVersion\Ex
plorer\Advanced\HideFileExt",1,"REG_DWORD");

Minimize Windows
In a script, you can use the following commands to minimize all
windows on your desktop:

OLE_CreateObject(%WA,"Shell.Application");

%WA.MinimizeAll();

You can do similar tasks by calling these methods:

This Method Arranges Windows

TileHorizontally() Tiles all Windows horizontally

TileVertically() Tiles all Windows vertically

CascadeWindows() Cascades all Windows

UndoMinimizeALL() Restores all Windows
InTouch HMI Scripting and Logic Guide

171
Chapter 8

Scripting ActiveX Controls

You can use ActiveX controls to read from and write to tagnames and
I/O references. In a script, you can reference ActiveX controls.

You can also create scripts that execute when an event occurs for the
ActiveX control. These scripts can be re-used and imported into other
applications.

Calling ActiveX Control Methods
In a script, you can call methods of an ActiveX control to perform
actions supported by the ActiveX control. ActiveX methods can be
called from any type of InTouch QuickScript or ActiveX Event script.

Note: To call the ActiveX method when an ActiveX event occurs, there
are some prerequisite things you need to do. See "Configuring ActiveX
Event Scripts" on page 35.
InTouch HMI Scripting and Logic Guide

172 Chapter 8 Scripting ActiveX Controls
To call an ActiveX control method

1 In a script dialog box, on the Insert menu, click ActiveX.

The ActiveX Control Browser dialog box appears.

2 Click the name of the ActiveX control from the left pane. The right
pane contains the names of properties and methods that are
supported by the ActiveX control.

3 Click the name of the method to use from the right pane and then
click OK. The method name and default parameters are pasted into
the script window at the cursor position.

4 Configure the method parameters inside the parentheses, to your
specifications.
InTouch HMI Scripting and Logic Guide

Accessing ActiveX Control Properties from the InTouch HMI173
Accessing ActiveX Control Properties from the
InTouch HMI

In a script, you can read from and write to ActiveX control properties
to exchange data between the ActiveX control and the InTouch
tagnames and display links.

Configuring ActiveX Control Properties to Read
and Write Data

In a script, you can read data from and write data to an ActiveX
control. You use the ActiveX control properties associated with specific
ActiveX controls.

There are two ways of doing this:

• Use the ActiveX control property in an InTouch HMI QuickScript
or ActiveX event script. The property value is read or written every
time the script is executed.

• Link the ActiveX control property directly to an InTouch HMI tag
or I/O reference. The property value is read or written at every
update interval.

Configuring Scripts to Read and Write ActiveX
Control Properties

In a script, you can configure ActiveX control properties to either write
values to or read values from InTouch HMI tagnames or other
expressions.
InTouch HMI Scripting and Logic Guide

174 Chapter 8 Scripting ActiveX Controls
To read data from or write data to an ActiveX control
property

1 Open a script window, point to Insert, and click ActiveX. The
ActiveX Control Browser dialog box appears.

2 Click the name of the ActiveX control from the left pane. The right
pane contains the names of properties and methods of the selected
ActiveX control.

3 Click the name of the property to use from the right pane. The
property name is inserted into the script window at the cursor
position.

4 Assign the property name to a tag or use according to your
specifications.

5 Click OK.

Example(s)

The following script reads the ToPriority property of the ActiveX
control instance AlarmViewerCtrl1 into the integer tagname topri.

topri = #AlarmViewerCtrl1.ToPriority;

The following script writes the value MS Comic to the Font property of
the ActiveX control called AlarmViewerCtrl1. This example changes
the display font of the AlarmViewer ActiveX control dynamically.

#AlarmViewerCtrl1.Font = "MS Comic";
InTouch HMI Scripting and Logic Guide

Accessing ActiveX Control Properties from the InTouch HMI175
Linking ActiveX Control Properties to Tag or I/O
References

You can link ActiveX control properties to InTouch HMI tags or I/O
references.

To link ActiveX control properties to tags or I/O references

1 Double-click the ActiveX control. The properties dialog box of the
ActiveX control appears.

2 Click the Properties tab and scroll to the right.

3 Select the property in the list.

4 Assign a tag or I/O reference. Do either of the following:

• Type the tag or I/O reference directly into the Associated Tag
column.

• Click the ellipsis button in the Associated Tag column between
the square parenthesis. The Select Tag dialog box appears.
Select a tag and click OK.

5 Click OK.
InTouch HMI Scripting and Logic Guide

176 Chapter 8 Scripting ActiveX Controls
Creating and Re-using ActiveX Event Scripts
An ActiveX control can support events, such as single-clicking on the
control, that you can use to associate certain actions with. These
actions are stored in ActiveX event scripts.

Creating ActiveX Event Scripts
You can create or re-use an event script that is executed every time a
specific ActiveX control event occurs, such as clicking on an ActiveX
control.

To create an ActiveX event script

1 Double-click the ActiveX control. The properties dialog box
appears.

2 Click the Events tab.

3 Click the event to associate. Brackets and ellipses appear in the
Script column.
InTouch HMI Scripting and Logic Guide

Creating and Re-using ActiveX Event Scripts177
4 In the Script column of the corresponding row, click between the
brackets.

5 Enter a new name and click OK. When a message appears, click
OK. The ActiveX Event Scripts dialog box appears.

6 Create the script according to your specifications.

Re-using ActiveX Event Scripts
You can re-use ActiveX event scripts if they are created by the same
ActiveX control parent and event.

For example, if you have multiple AlarmViewer ActiveX controls in an
application, they can share event scripts for the DoubleClick event.

To re-use an ActiveX event script

1 Double-click the ActiveX control. The properties dialog box
appears.

2 Click the Events tab.

3 Click the event to associate. Brackets and ellipses appear in the
Script column.

4 In the Script column of the corresponding row, click the ellipsis
button. The Choose ActiveX Script dialog box appears.

5 Click an ActiveX script and click OK.

6 Click OK again.
InTouch HMI Scripting and Logic Guide

178 Chapter 8 Scripting ActiveX Controls
Creating Self-Referencing ActiveX Event Scripts
If you use ActiveX event scripts, you can configure them to reference
themselves instead of an absolute ActiveX control name. This is useful
when you create ActiveX event scripts that will be re-used. ActiveX
event scripts can either:

• Reference the specific ActiveX control that produced the event
(ThisControl).

• Reference the specific event that called the script (ThisEvent).

Referencing the specific event enables the ActiveX control to pass
other parameters to the ActiveX control script.

To create self-referencing ActiveX event scripts

1 Create an ActiveX event script for a specific ActiveX event. See
"Creating ActiveX Event Scripts" on page 174.

2 In the ActiveX Event Script dialog box, click Insert, and then click
ActiveX. The ActiveX Control Browser dialog box appears.

3 In the left pane, do one of the following:

• Click ThisControl to see properties and methods that you can
use in connection with this control (and any other control that
you re-use this script in).

• Click ThisEvent to see properties and methods of the ActiveX
control that you can use in connection with the self-referencing
event.

4 In the right pane, click one of the properties or methods and click
OK. The selected property or method is pasted to the script
window.
InTouch HMI Scripting and Logic Guide

Importing ActiveX Event Scripts179
5 Configure the script.

6 Click OK.

For example, this statement writes the value of the ClicknRow event
parameter to the ClickedRow tag:

ClickedRow = ThisEvent.ClicknRow;

Importing ActiveX Event Scripts
You can import ActiveX event scripts from other InTouch HMI
applications so as to re-use them in the application currently under
development.

To import ActiveX event scripts from other applications

1 On the File menu, click Import. The Import from directory dialog
box appears.

2 Browse to the InTouch HMI application that contains the ActiveX
event scripts to import.

3 Click OK. The Application Data Import Options dialog box
appears.

4 Select the ActiveX Event Scripts check box and click Import. All
ActiveX event scripts are imported into the current InTouch HMI
application.
InTouch HMI Scripting and Logic Guide

180 Chapter 8 Scripting ActiveX Controls
InTouch HMI Scripting and Logic Guide

181
Chapter 9

Troubleshooting QuickScripts

You can troubleshoot QuickScripts by using the Log Viewer to display
run time values of tagnames.

Logging Messages to the Log Viewer
Use the ArchestrA Log Viewer to help you debug QuickScripts. The
Log Viewer is located in the ArchestrA System Management Console
(SMC) and is installed when you install the InTouch HMI.

One way to debug QuickScripts is to:

1 Set check points in the QuickScript to log values to the Log Viewer.

2 Open Log Viewer to view the values.

Another way is create a Key Script that logs tag values to the Log
Viewer.

To set check points in a QuickScript

1 Open the QuickScript that you suspect is causing errors.

2 Locate the line where you want to set a check point.

3 Insert one of the following snippets of code after that line:

• LogMessage(messagetag);
In this script, messagetag is the name of a message tagname
whose value you want to log.

• LogMessage(StringFromIntg(inttag,10));
In this script, inttag is the name of an integer tagname whose
value you want to log.
InTouch HMI Scripting and Logic Guide

182 Chapter 9 Troubleshooting QuickScripts
• LogMessage(Text(realtag,”#.#######”));
In this script, realtag is the name of a real tagname whose
value you want to log.

• LogMessage(DText(disctag,”TRUE”,”FALSE”));
In this script, disctag is the name of a discrete tagname whose
value you want to log.

• Log more information to the LogViewer at a checkpoint, such
as an identifier and/or tagname. For example,
LogMessage("DEBUG tag:"+ind.name+"

value:"+Text(ind,"#.####"));

In this script, ind could be an analog indirect tag.

LogMessage() Function
Writes a user-defined message to the ArchestrA Log Viewer.

Category

misc

Syntax

LogMessage("Message_Tag");

Parameter

Message_Tag
String to log to the Log Viewer. Actual string or message tagname.

Remarks

This is a very powerful function for troubleshooting InTouch scripting.
By strategically placing LogMessage() functions in your scripts, you
can determine the order of QuickScript execution, the performance of
scripts, and identify the value of tags both before they are changed and
after they have been affected by the QuickScript. Each message posted
to the Log Viewer is stamped with the exact date and time.

Example(s)

LogMessage("Report Script is Running");

The above statement would print the following to the Log Viewer:

94/01/14 15:21:14 WWSCRIPT Message:Report Script is Running.

LogMessage("The Value of MyTag is " + Text(MyTag, "#"));

MyTag = MyTag + 10;

LogMessage("The Value of MyTag is " + Text(MyTag, "#"));
InTouch HMI Scripting and Logic Guide

Viewing Log Viewer Messages183
Viewing Log Viewer Messages
The Log Viewer is located in the ArchestrA System Management
Console (SMC) and is installed when you install the InTouch HMI.

To view the logged values in Log Viewer

1 Click Start, point to Programs, point to Wonderware, and then
click ArchestrA System Management Console. The ArchestrA
System Management Console appears.

2 In the left pane expand Log Viewer, expand Default Group, and
then click Local. The Log Viewer messages appear in the details
pane.

3 Locate the logged values from the LogMessage() function.

Note: If you are debugging the script on a remote InTouch HMI node,
you must add the Node name to the Node Group in Log Viewer and
view the Log Viewer messages of that node.
InTouch HMI Scripting and Logic Guide

184 Chapter 9 Troubleshooting QuickScripts
InTouch HMI Scripting and Logic Guide

185
Index

Symbols
$AccessLevel system tag 151
$ChangePassword system tag 150
$ConfigureUsers system tag 150
$Date system tag 117
$DateString system tag 119
$DateTime system tag 118
$Day system tag 115
$Hour system tag 115
$InactivityTimeout system tag 151
$InactivityWarning system tag 151
$LogicRunning system tag 41
$Minute system tag 116
$Month system tag 114
$Msec system tag 117
$OperatorDomainEntered system tag 150
$OperatorEntered system tag 150
$PasswordEntered system tag 150
$Second system tag 116
$Time system tag 117
$TimeString system tag 119
$Year system tag 114

A
Abs() function 74
accessing the properties of an OLE object 162
action scripts

condition type list 35
configuring 34
deleting 37
opening 16
triggers 24

ActivateApp() function 127
activating a running windows application 127
ActiveX

calling a method 172
control browser 172
control methods 171
control properties 173
control properties, read and write data 173
creating event scripts 176
inserting methods or properties in a
script 19

linking properties to tags 175
re-using event scripts 177

ActiveX event scripts 176–179
configuring 38
creating 176
InTouch HMI Scripting and Logic Guide

186Index
deleting 40
editing 39
importing 179
opening 16
re-using 177
self-referencing 178
triggers 24

AddPermission() function 151
animation display links, forcing updates 73
application scripts

configuring 25
limitations 26
opening 16
triggers 24

ArcCos() function 79
ArcSin() function 78
ArcTan() function 79
ASCII Codes, converting 87
assigning multiple pointers to the same OLE
object 164

asynchronous QuickFunctions
checking 70
limitations 70
stopping 71

AttemptInvisibleLogon() function 149

B
branching

IF-THEN-ELSE 58
invalid example 60
nested 59

branching structures 58

C
calculating

logarithms 80
Pi 80
square root 82

calculations 74
calling

ActiveX control methods 171
custom functions 47
methods of an OLE object 163
QuickFunctions 69
standard functions 46

calling custom functions 47–48
calling QuickFunctions 47–48
ChangePassword() function 150

ChangeWindowColor() function 108
changing

case of strings 85
color of a window 108
discrete ActiveX control default property
values 173

password 150
checking

daylight savings time status 124
if a specific application is running 126
if a window is open, closed or does not
exist 103

if any asynchronous QuickFunctions are
running 70

closing, minimizing or maximizing a windows
application 130

comments in scripts 44
comparing strings 93
condition scripts

configuring 30
deleting 32
triggers 24

conditional program branching 58–60
conditional structure, nested 59
configuring

action scripts 34
ActiveX control properties to read and write
data 173

ActiveX event scripts 38
application scripts 25–26
condition scripts 30
data change scripts 33
key scripts 28
QuickFunctions 68
window scripts 27

converting
ASCII codes 87
characters 87
date and time to strings 121
discrete value to string 100
integer or real to string 96
integer value to string 97
string to integer value 98
string to real value 99

converting data types 95–101
copying, cutting, and pasting text 18
correct syntax 20
Cos() function 78
InTouch HMI Scripting and Logic Guide

Index187
creating
ActiveX event scripts 176, 178
custom scripts 67
OLE object 160
scripts 15
user interface dialog boxes 167

CSV file functions 139

D
data change scripts

configuring 33
deleting 33
triggers 24

data types, conversion 57
date and time 113–124
date and time system tags 113
date and time, converting to strings 121
date and time, retrieving as string 119
DateTimeGMT() function 118
daylight savings time 124
DDE, executing commands and exchanging
data using 131

declaring a local variable 64
deleting scripts 21
directory information, retrieving 145
discarding changes 17
discrete values, converting to string 100
documentation conventions 9
dot fields, inserting 19
DText() function 100

E
editing scripts 15–19
editor 13
event scripts

creating 176
importing 179
re-using 177
self-referencing 178

example of incorrect nesting 60
executing commands and exchanging data
using DDE 131

Exp() function 81
expression examples 57

F
file operations 134
FileCopy() function 135

FileDelete() function 137
FileMove() function 137
FileReadFields() function 139
FileReadMessage() function 141
files

CSV functions 139
retrieving directory information 145
text functions 141

FileWriteFields() function 140
FileWriteMessage() function 142
finding and/or replacing text 18
FOR loops 61

forcing the end 62
forcing the end of a loop 62
forcing updates in animation display links 73
formatting strings with spaces 87
functions

Abs() function 74
ActivateApp() function 127
AddPermission() function 151
ArcCos() function 79
ArcSin() function 78
ArcTan() function 79
AttemptInvisibleLogon() function 149
calling syntax 46
ChangePassword() function 150
ChangeWindowColor() function 108
Cos() function 78
DateTimeGMT() function 118
definition 12
DText() function 100
Exp() function 81
FileCopy() function 135
FileDelete() function 137
FileMove() function 137
FileReadFields() function 139
FileReadMessage() function 141
FileWriteFields() function 140
FileWriteMessage() function 142
GetAccountStatus() function 151
GetNodeName() function 143
GetPropertyD() function 153
GetPropertyI() function 155
GetPropertyM() function 156
GetWindowName() function 101
Hide() function 107
HideSelf() function 108
InfoAppActive() function 126
InTouch HMI Scripting and Logic Guide

188Index
InfoAppTitle() function 126
InfoDisk() function 144
InfoFile() function 145
InfoInTouchAppDir() function 148
InfoResources() function 146
Int() function 75
InTouchVersion() function 148
InvisibleVerifyCredentials() function 151
IsAnyAsyncFunctionBusy() function 70
IsAssginedRole() function 151
LaunchTagViewer() function 113
Log() function 80
LogMessage() function 182
LogN() function 81
Logoff() function 150
LogonCurrentUser() function 149
OLE_CreateObject() function 160
OLE_GetLastObjectError() function 165
OLE_GetLastObjectErrorMessage()
function 165

OLE_IsObjectValid() function 160
OLE_ReleaseObject() function 161
OLE_ResetObjectError() function 166
OLE_ShowMessageOnObjectError()
function 166

OpenWindowsList() function 103
passing parameters 46
PlaySound() function 152
PostLogonDialog() function 150
PrintHT() function 112
PrintScreen() function 111
PrintWindow() function 110
QueryGroupMembership() function 151
Round() function 75
SendKeys 128
SetPropertyD() function 154
SetPropertyI() function 155
SetPropertyM() function 157
SetWindowPrinter() function 109
Sgn() function 76
Show() function 104
ShowAt() function 105
ShowHome() function 106
ShowTopLeftAt() function 106
Sin() function 77
Sqrt() function 82
StartApp 125
StringASCII() function 88

StringChar() function 88
StringCompare() function 93
StringCompareEncrypted() function 95
StringCompareNoCase() function 94
StringFromIntg() function 97
StringFromReal() function 97
StringFromTime() function 121
StringFromTimeLocal() function 123
StringInString() function 89
StringLeft() function 83
StringLen() function 92
StringLower() function 85
StringMid() function 84
StringReplace() function 90
StringRight() function 83
StringSpace() function 87
StringTest() function 92
StringToIntg() function 98
StringToReal() function 99
StringTrim() function 86
StringUpper() function 85
Tan() function 79
Text() function 96
trigonometric 77
Trunc() function 76
UTCDateTime() function 120
WindowState() function 103
WWControl() function 130
WWExecute() function 131
wwIsDaylightSavings() function 124
WWMoveWindow() function 106
WWPoke() function 133
WWRequest() function 132
wwStringFromTime() function 122

G
GetAccountStatus() function 151
GetNodeName() function 143
GetPropertyD() function 153
GetPropertyI() function 155
GetPropertyM() function 156
getting and setting properties of wizards 153
GetWindowName() function 101

H
help for script functions 19
Hide() function 107
HideSelf() function 108
InTouch HMI Scripting and Logic Guide

Index189
hiding InTouch windows 107
historical trend printing 112

I
IF-THEN-ELSE branching 58
implicit data type conversion 57
importing ActiveX event scripts 179
incorrect nesting example 60
indenting script statements 44
InfoAppActive() function 126
InfoAppTitle() function 126
InfoDisk() function 144
InfoFile() function 145
InfoInTouchAppDir() function 148
InfoResources() function 146
inserting

code elements 18
dot fields 19

inserting functions 18
inserting tagnames 18
Int() function 75
integers, converting from string 98
integers, converting to string 97
interacting with other applications 125–134
InTouchVersion() function 148
InvisibleVerifyCredentials() function 151
IsAnyAsyncFunctionBusy() function 70
IsAssignedRole() function 151

K
key scripts

configuring 28
deleting 30
triggers 24

L
LaunchTagViewer() function 113
limitations

application scripts 26
asynchronous QuickFunctions 70

literal data values 45
local variables 64–65

declaring 64
naming conflicts 65
using 64

Log Viewer 183
Log() function 80
logarithms 80

logging messages 181–183
logging on and off 149
LogMessage() function 181, 182
LogN() function 81
Logoff() function 150
LogonCurrentUser() function 149
loops 63

effect on other processes 63
examples 63
FOR 61
forcing the end of 62
time limit for execution 63
using 61

M
managing files 135
managing security and other information 151
mathematical calculations 74–82
MEM OLE 13
minimizing windows 170
miscellaneous scripting 152
moving and resizing a window 106
multiple triggers 24

N
naming conflicts 65

O
OLE

counting error messages 166
creating user interface dialog boxes 167
errors 165
minimizing windows 170
opening windows date/time properties
panel 169

producing random numbers with 167
reading from and writing to the registry 170
reset last error 166
show or hide error message 166

OLE objects
accessing the properties 162
assigning multiple pointers to 164
calling methods 163
creating 160
errors 165
properties and methods 162
reading a property 162
releasing 161
InTouch HMI Scripting and Logic Guide

190Index
validity 160
writing a property 163

OLE_CreateObject() function 160
OLE_GetLastObjectError() function 165
OLE_GetLastObjectErrorMessage()
function 165

OLE_IsObjectValid() function 160
OLE_ReleaseObject() function 161
OLE_ResetObjectError() function 166
OLE_ShowMessageOnObjectError()
function 166

opening
InTouch windows 104
script for editing 16
windows date/time properties panel 169

OpenWindowsList() function 103
operators

addition 49
AND 52, 54
bitwise AND 52
bitwise OR 53
bitwise XOR 53
comparisons 55
complement 51
concatenation 49
division 50
evaluation order 56
logical conjunction AND 54
logical disjunction OR 54
logical negation NOT 55
modulo, MOD 51
multiplication 50
negation 50
NOT 55
OR 53, 54
power 50
shift left 51
shift right 51
SHL 51
SHR 51
subtraction 50
supported 48
XOR 53

P
passing parameters to a function 46
passing parameters to a QuickFunction 48
password, setting and changing 150

pausing script execution 40
periodic script execution 25
Pi 80
playing sound files 152
PlaySound() function 152
PostLogonDialog() function 150
PrintHT() function 112
printing historical trend 112
printing recommendations for windows 109
printing scripts 20–21
printing windows 109
PrintScreen() function 111
PrintWindow() function 110
producing random numbers with OLE 167
program branching 58
program loops 61
properties list 153–157

Q
QueryGroupMembership() function 151
QuickFunctions 67

asynchronous limitations 70
calling 47, 69
checking asynchronous 70
configuring 68
creating 68
creating asynchronous 69
definition 12, 67
deleting 69
modifying 69
passing parameters to 48
stopping asynchronous 71

QuickScripts
about the language 12
logging messages to LogViewer 181
setting check points 181
troubleshooting 181

R
reading and writing

CSV data 139
text data 141
to the registry 170

real values
converting from string 99
converting to strings 97

releasing an OLE object 161
removing spaces from strings 86
InTouch HMI Scripting and Logic Guide

Index191
retrieving
application title 126
disk space information 144
information on a file or directory 145
information on the windows
environment 146

InTouch related information 147
node name of the PC 143
numerical date and time information 113
string date and time information 119
system-related information 143

retrieving InTouch related information 147–
149

retrieving system-related information 143–
147

returning
information about strings 92
parts of strings 83
the value of Pi 80

re-using ActiveX event scripts 177
Round() function 75
running asynchronous QuickFunctions 69–71

S
saving changes 17
script

printing 21
script editor 13
script examples

create user interface dialog 167
declaring local variables 65
extract integer from string 99
extract real number from string 100
loop to initialize tags 63
loop to insert database records 62
loop to remove spaces 86
monitor asynchronous functions 71
nested loops 64

script language overview 43
script triggers 23–25
scripting, security-related 149
scripts

copying, cutting, and pasting text 18
definition 12
discarding changes 17
finding and/or replacing text 18
inserting ActiveX methods or properties 19
inserting code elements 18

inserting dot fields 19
inserting functions 18
inserting keywords or operators 19
inserting tagnames 18
inserting window names 19
opening 16
pausing execution 40
periodic execution 25
playing sound files 152
printing 20
saving changes 17
statements 44
syntax rules 44
types 24
using DDE 131
validation 20

searching and replacing text in strings 89
security-related scripting 149
self-referencing ActiveX event scripts 178
sending simulated key strokes to an
application 128

SendKeys 128
SetPropertyD() function 154
SetPropertyI() function 155
SetPropertyM() function 157
setting a password 150
setting the evaluation order of operators 56
SetWindowPrinter() function 109
Sgn() function 76
Show() function 104
ShowAt() function 105
ShowHome() function 106
showing a list of open windows 103
ShowTopLeftAt() function 106
Sin() function 77
specifying and configuring users 150
Sqrt() function 82
square root 82
StartApp 125
starting a windows application 125
statements 44
stopping QuickFunctions 71
string operations 82–95
StringASCII() function 88
StringChar() function 88
StringCompare() function 93
StringCompareEncrypted() function 95
StringCompareNoCase() function 94
InTouch HMI Scripting and Logic Guide

192Index
StringFromIntg() function 97
StringFromReal() function 97
StringFromTime() function 121
StringFromTimeLocal() function 123
StringInString() function 89
StringLeft() function 83
StringLen() function 92
StringLower() function 85
StringMid() function 84
StringReplace() function 90
StringRight() function 83
strings

changing case 85
comparing 93
converting date and time 121
converting discrete value 100
converting integer or real to 96
converting integer value 97
converting real values to 97
converting to integer values 98
converting to real values 99
formatting with spaces 87
removing spaces from 86
replacing text in 89
returning information about 92
returning parts of 83

StringSpace() function 87
StringTest() function 92
StringToIntg() function 98
StringToReal() function 99
StringTrim() function 86
StringUpper() function 85
subroutines 44
syntax

comments 44
indenting 44
literal data values 45
rules 44
statements 44
subroutines 44
tag references 45
validation 20, 45
value expressions 45

syntax rules 44–45
system tags, date and time 113, 119

T
tag references 45
tags, naming conflicts 65
Tan() function 79
technical support 9
Text() function 96
trigonometric functions 77
troubleshooting OLE errors 165–167
troubleshooting QuickScripts 181–183
Trunc() function 76
types of script triggers 24

U
updating animation display links 73
using conditional program branching 58
using program loops 61–64
UTCDateTime() function 120

V
validating scripts 20
value assignments and operators 48, 48–58
variables

declaring 64
naming conflicts 65
using 64

verifying an OLE object 160
viewing log messages 183

W
window scripts

configuring 27
opening 16
triggers 24

window state 103
windows

activate application 127
activating 127
application title 126
changing color 108
closing, minimizing, or, maximizing 130
hiding 107
interacting with other applications 125
is running 126
moving and resizing 106
opening 104
printing 109
printing recommendations 109
InTouch HMI Scripting and Logic Guide

Index193
retrieving environment information 146
sending key strokes 128
starting 125

WindowState() function 103
wizards

getting and setting properties 153
list of property functions 153

working with files 134–143

WWControl() function 130
WWExecute() function 131
wwIsDaylightSavings() function 124
WWMoveWindow() function 106
WWPoke() function 133
WWRequest() function 132
wwStringFromTime() function 122
InTouch HMI Scripting and Logic Guide

194Index
InTouch HMI Scripting and Logic Guide

	InTouch® HMI Scripting and Logic Guide
	Contents
	Welcome
	Documentation Conventions
	Technical Support

	Introduction to Scripting
	Basic Scripting Concepts
	Types of Scripts
	Editing and Creating Scripts
	Advanced Scripting Concepts
	OLE Objects
	Scripting with ActiveX Controls

	Creating and Editing Scripts
	Opening a Script for Editing
	Saving or Discarding Changes to a Script
	Copying, Cutting and Pasting Text
	Finding and/or Replacing Text
	Inserting Code Elements
	Accessing Help for Script Functions
	Validating Scripts for Correct Syntax
	Printing Scripts
	Deleting Scripts

	Script Triggers
	Types of Script Triggers
	Using Multiple Triggers
	Periodic Script Execution
	Configuring Application Scripts
	Limitations of Application Scripts

	Configuring Window Scripts
	Configuring Key Scripts
	Configuring Condition Scripts
	Configuring Data Change Scripts
	Configuring Action Scripts
	Configuring ActiveX Event Scripts
	Pausing Script Execution at Run Time
	$LogicRunning System Tag

	The Script Language
	Basic Syntax Rules
	Subroutines
	Statements
	Indentation
	Comments
	Tag References
	Literal Data Values
	Value Expressions
	Syntax Validation

	Calling Standard Functions
	Syntax for Calling Standard Functions
	Passing Parameters to a Function

	Calling Custom Functions (QuickFunctions)
	Passing Parameters to a QuickFunction

	Value Assignments and Operators
	Supported Operators
	Addition or Concatenation: +
	Subtraction or Negation: -
	Multiplication: *
	Division: /
	Power: **
	Modulo: MOD
	Complement: ~
	Shift Left: SHL and Shift Right: SHR
	Bitwise AND: &
	Bitwise OR: |
	Bitwise XOR: ^
	Logical Conjunction: AND
	Logical Disjunction: OR
	Logical Negation: NOT
	Comparisons: <, >, <=, >=, ==, <>

	Setting the Evaluation Order of Operators
	Implicit Data Type Conversion
	Examples for Expressions

	Using Conditional Program Branching Structures
	Simple Conditional Structure
	Nested Conditional Structure
	Invalid Scripting Example (Missing ENDIF)
	Invalid Scripting Example (Incorrect Nesting)

	Using Program Loops
	Forcing the End of a Loop
	Effect of Loops on Other Run-Time Processes
	Time Limit for Loop Execution
	Examples of Loops

	Using Local Variables
	Declaring a Local Variable
	Naming Conflicts between Local Variables and Tags

	Custom Script Functions
	About QuickFunctions
	Configuring QuickFunctions
	Calling QuickFunctions
	Creating Asynchronous QuickFunctions
	Limitations of Asynchronous QuickFunctions
	Checking if any Asynchronous QuickFunctions are Running
	IsAnyAsyncFunctionBusy() Function

	Stopping Asynchronous QuickFunctions from Running

	Built-In Functions
	Forcing Updates in Animation Display Links
	Mathematical Calculations
	Rounding, Truncating, and Determining Sign
	Abs() Function
	Int() Function
	Round() Function
	Sgn() Function
	Trunc() Function

	Using Trigonometric Functions
	Sin() Function
	ArcSin() Function
	Cos() Function
	ArcCos() Function
	Tan() Function
	ArcTan() Function

	Returning the Value of Pi
	Calculating Logarithms
	Log() Function
	Exp() Function
	LogN() Function

	Calculating the Square Root

	String Operations
	Returning Parts of Strings
	StringLeft() Function
	StringRight() Function
	StringMid() Function

	Changing Case of Strings
	StringLower() Function
	StringUpper() Function

	Removing Spaces from Strings
	StringTrim() Function

	Formatting Strings with Spaces
	Converting Between Characters and ASCII Codes
	StringChar() Function
	StringASCII() Function

	Searching and Replacing Text in Strings
	StringInString() Function
	StringReplace() Function

	Returning Information about Strings
	StringLen() Function
	StringTest() Function

	Comparing Strings
	StringCompare() Function
	StringCompareNoCase() Function
	StringCompareEncrypted() Function

	Converting Data Types
	Text() Function
	StringFromIntg() Function
	StringFromReal() Function
	StringToIntg() Function
	StringToReal() Function
	DText() Function

	Working with InTouch Windows at Run Time
	Expose Window Name Property
	GetWindowName() Function

	Showing a List of Open Windows
	OpenWindowList() Function

	Checking If a Window is Open, Closed, or Exists
	WindowState() Function

	Opening InTouch Windows
	Show() Function
	ShowAt() Function
	ShowHome() Function
	ShowTopLeftAt() Function

	Moving and Resizing a Window
	WWMoveWindow() Function

	Hiding InTouch Windows
	Hide() Function
	HideSelf() Function

	Changing the Color of a Window
	ChangeWindowColor() Function

	Printing Windows at Run Time
	SetWindowPrinter() Function
	Recommendations for Printing
	PrintWindow() Function
	PrintScreen() Function
	PrintHT() Function

	Starting Tag Viewer
	LaunchTagViewer() Function

	Working with Date and Time Information
	Retrieving Numerical Date and Time Information
	$Year System Tag
	$Month System Tag
	$Day System Tag
	$Hour System Tag
	$Minute System Tag
	$Second System Tag
	$Msec System Tag
	$Time System Tag
	$Date System Tag
	$DateTime System Tag
	DateTimeGMT() Function

	Retrieving String Date and Time Information
	$DateString System Tag
	$TimeString System Tag
	UTCDateTime() Function

	Converting Date and Time Information to Strings
	StringFromTime() Function
	wwStringFromTime() Function
	StringFromTimeLocal() Function

	Checking the Daylight Savings Time Status
	wwIsDaylightSaving() Function

	Interacting with Other Applications
	Starting a Windows Application
	Retrieving the Application Title of a Running Application
	InfoAppTitle() Function

	Checking If an Application is Running
	InfoAppActive() Function

	Activating a Running Windows Application
	ActivateApp Function

	Sending Simulated Key Strokes to an Application
	SendKeys Function

	Closing, Minimizing or Maximizing a Windows Application
	WWControl() Function

	Executing Commands and Exchanging Data using DDE
	WWExecute() Function
	WWRequest() Function
	WWPoke() Function

	Working with Files
	Managing Files
	FileCopy() Function
	FileDelete() Function
	FileMove() Function

	Reading and Writing CSV Data
	FileReadFields() Function
	FileWriteFields() Function

	Reading and Writing Text Data
	FileReadMessage() Function
	FileWriteMessage() Function

	Retrieving System-Related Information
	Retrieving the Node Name of the Computer
	GetNodeName() Function

	Retrieving Disk Space Information
	InfoDisk() Function

	Retrieving Information on a File or Directory
	InfoFile() Function

	Retrieving Information on the Windows Environment
	InfoResources() Function

	Retrieving InTouch Related Information
	Retrieving the Name of the InTouch Application Directory
	InfoInTouchAppDir() Function

	Retrieving the InTouch Version
	InTouchVersion() Function

	Security-Related Scripting
	Logging On and Off
	Changing and Setting Password
	Specifying and Configuring Users
	Managing Security and Other Information

	Miscellaneous Scripting
	Playing Sound Files from an InTouch Application
	PlaySound() Function

	Getting and Setting Properties of Wizards
	GetPropertyD() Function
	SetPropertyD() Function
	GetPropertyI() Function
	SetPropertyI() Function
	GetPropertyM() Function
	SetPropertyM() Function

	Scripting with OLE Objects
	Creating, Validating, and Releasing OLE Objects
	OLE_CreateObject() Function
	OLE_IsObjectValid() Function
	OLE_ReleaseObject() Function

	Using OLE Object Properties and Methods
	Accessing the Properties of an OLE Object
	Reading an OLE Object Property
	Writing to an OLE Object Property

	Calling Methods of an OLE Object

	Assigning Multiple Pointers to the Same OLE Object
	Troubleshooting OLE Errors
	OLE_GetLastObjectError() Function
	OLE_GetLastObjectErrorMessage() Function
	OLE_ResetObjectError() Function
	OLE_ShowMessageOnObjectError() Function
	OLE_IncrementOnObjectError() Function

	Things You Can Do with OLE
	Produce Random Numbers
	Create User Interface Dialog Boxes
	Open Windows Date and Time Properties Panel
	Read and Write to the Registry
	Minimize Windows

	Scripting ActiveX Controls
	Calling ActiveX Control Methods
	Accessing ActiveX Control Properties from the InTouch HMI
	Configuring ActiveX Control Properties to Read and Write Data
	Configuring Scripts to Read and Write ActiveX Control Properties
	Linking ActiveX Control Properties to Tag or I/O References

	Creating and Re-using ActiveX Event Scripts
	Creating ActiveX Event Scripts
	Re-using ActiveX Event Scripts
	Creating Self-Referencing ActiveX Event Scripts

	Importing ActiveX Event Scripts

	Troubleshooting QuickScripts
	Logging Messages to the Log Viewer
	LogMessage() Function

	Viewing Log Viewer Messages

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MapInfoCartographic
 /Map-Symbols
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /OCRAExtended
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

