
Wonderware® FactorySuite™
SQL Access Manager User’s Guide
Revision A

Last Revision: August 2002

Invensys Systems, Inc.

All rights reserved. No part of this documentation shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
the Invensys Systems, Inc. No copyright or patent liability is assumed with
respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this documentation, the
publisher and the author assume no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the
information contained herein.

The information in this documentation is subject to change without notice and
does not represent a commitment on the part of Invensys Systems, Inc. The
software described in this documentation is furnished under a license or
nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2002 Invensys Systems, Inc. All Rights Reserved.

Invensys Systems, Inc.
33 Commercial Street
Foxboro, MA 02035
(949) 727-3200
http://www.wonderware.com

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Invensys Systems, Inc. cannot
attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.
Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad,
DTAnalyst, FactoryFocus, FactoryOffice, FactorySuite, hotlinks, InBatch,
InControl, IndustrialRAD, IndustrialSQL Server, InTouch, InTrack,
MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and
affiliates. All other brands may be trademarks of their respective owners.

Contents 3

Contents

CHAPTER 1: SQL Access Manager5

Introduction .. 5
About this Manual .. 6
Technical Support... 7
ODBC Compliant... 7

CHAPTER 2: Configuring and Connecting
Databases ..9

Using Oracle 8.0... 9
SQLConnect() Format .. 9
Logging Date and Time to an Oracle Date Field.............................. 10

Using Microsoft SQL Server...11
Configuring the Client ...11
Data Types Supported... 12

Using Microsoft Access ... 12
String Length .. 12

Data Type Values for Supported Databases ... 13

CHAPTER 3: Configuring SQL Access
Manager ...15

SQL Access Manager Overview.. 15
Configuring a Bind List .. 16

Using Special Delimiters.. 19
Configuring a Table Template .. 20
The SQL.DEF File ... 23

CHAPTER 4: Using SQL Functions25
SQL Functions.. 25

Function .. 25
SQL Parameters.. 34
Using SQL Functions in InTouch QuickScripts................................... 37

Specifying Complex Queries.. 37
Fetching Values into InTouch Tags... 41
Persisting InTouch Tags into Database Field Values 41
Implications of the Data Updating Rules ... 42

CHAPTER 5: Troubleshooting.........................43
Troubleshooting Functions... 43

Result Code Error Messages... 43
InTouch SQL Access Manager User’s Guide

4 Contents
Specific Database Error Messages..45
Debugging SQL Access ..46

APPENDIX A: Reserved Keywords.................47
SQL Access and ODBC ..47
InTouch..49

 Index..51
InTouch SQL Access Manager User’s Guide

SQL Access Manager 5
C H A P T E R 1

SQL Access Manager

Wonderware FactorySuite SQL Access Manager allows you to access,
modify, create and delete tables in a database. A database stores information in
tables that share a common attribute or field. Structured Query Language
(SQL) is the language used to access that information.

Contents
• Introduction

• About this Manual

• Technical Support

• ODBC Compliant

Introduction
The InTouch SQL Access Manager add-on program is designed to easily
transfer data, such as batch recipes from a SQL database to an InTouch
application. It also facilitates the transfer of run-time data, alarm status or
historical data from InTouch to the SQL database. For example, after a
machine cycle is completed, a company may need to save several sets of data,
each for a different application. SQL databases provide the ability for
information to be transferred between one or more third-party applications
easily. SQL Access Manager allows this data to be accessed and displayed in
any InTouch application.

The InTouch SQL Access product consists of the SQL Access Manager
program and the SQL Functions. The SQL Access Manager program is used to
create and associate database columns with tagnames in your InTouch tagname
dictionary. The process of associating database columns and InTouch database
tagnames is called "binding." Binding the InTouch database tagnames to the
database columns allows the SQL Access Manager to directly manipulate the
data in the database. SQL Access Manager saves the database field names and
their associations in a comma-separated variable (.CSV) formatted file named
"SQL.DEF." (This file resides in the InTouch application directory and may be
viewed or modified using SQL Access Manager or any text editor, such as
Notepad.) The SQL Access Manager also creates Table Templates defining
database structure and format.
For more information on Bind Lists and Table Templates, see Chapter 3,
"Configuring SQL Access Manager."
InTouch SQL Access Manager User’s Guide

6 Chapter 1
SQL Functions can be used in any InTouch action script. These functions can
be used to automatically execute based on operator input, a tagname value
changing or when a particular set of conditions exist. For example, if an alarm
condition exists, the application would execute a SQLInsert() or
SQLUpdate() command to save all of the applicable data points and the state
of the alarm. The SQL Functions can be used to create new tables, insert new
records into tables, edit existing table records, clear tables, delete tables, select
and scroll through records, etc.

Note Database systems not discussed in this user's guide are not supported.

About this Manual
This manual is divided into a series of logical building block chapters that
describe the various aspects of using SQL Access Manager. It is written in a
"procedural" format that tells you in numbered steps how to perform most
functions or tasks.
If you are viewing this manual online, when you see text that is green, click the
text to "jump" to the referenced section or chapter. When you jump to another
section or chapter and you want to come back to the original section, a "back"
option is provided.

Tip These are "tips" that tell you an easier or quicker way to accomplish a
function or task.

The InTouch User's Guide will help you familiarize yourself with the
WindowMaker development environment and its tools, read Chapter 1,
"WindowMaker Program Elements." To learn about working with windows,
graphic objects, wizards, ActiveX controls and so on, read Chapter 2, "Using
WindowMaker."

For details on InTouch runtime environment (WindowViewer), see your online
InTouch Runtime User's Guide.

In addition, the InTouch Reference Guide provides you with an in-depth
reference to the InTouch script language, system tagnames, and tagname
.fields.

For details on the add-on program, SPC Pro, see your SPC Pro User's Guide.

For details on the add-on program, Recipe Manager, see your Recipe Manager
User's Guide.

Online manuals are also included in your FactorySuite software package for all
FactorySuite components.

Note You must install the Adobe Acrobat Reader (version 4.0 or later) to
view or print the online manuals.

Assumptions
This manual assumes you are:
InTouch SQL Access Manager User’s Guide

SQL Access Manager 7
• Familiar with the Windows 2000, Windows XP, and/or Windows NT
operating system working environment.

• Knowledgeable of how to use of a mouse, Windows menus, select options,
and accessing online Help.

• Experienced with a programming or macro language. For best results, you
should have an understanding of programming concepts such as variables,
statements, functions and methods.

Technical Support
Wonderware Technical Support offers a variety of support options to answer
any questions on Wonderware products and their implementation.

Prior to contacting technical support, please refer to the relevant chapter(s) in
your SQL Access Manager User's Guide for a possible solution to any problem
you may have with your system. If you find it necessary to contact technical
support for assistance, please have the following information available:

1. Your software serial number.

2. The version of InTouch you are running.

3. The type and version of the operating system you are using. For example,
Microsoft Windows NT Version 4.0 workstation.

4. The exact wording of system error messages encountered.

5. Any relevant output listing from the Wonderware Logger, the Microsoft
Diagnostic utility (MSD), or any other diagnostic applications.

6. Details of the attempts you made to solve the problem(s) and your results.

7. Details of how to recreate the problem.

8. If known, the Wonderware Technical Support case number assigned to
your problem (if this is an on-going problem).

For more information on Technical Support, see your online FactorySuite
System Administrator's Guide.

ODBC Compliant
SQL Access Manager is an ODBC compliant application that communicates
with any database system, provided the database system has an ODBC driver
available for it. Before you can use an ODBC driver, it must be configured via
the Microsoft ODBC Administrator program to set up the links between the
ODBC compliant application and the database.

To configure an ODBC driver

1. Run the Microsoft ODBC Administrator program.
InTouch SQL Access Manager User’s Guide

8 Chapter 1
2. Select a driver or data source, and then click Add New Name, Set Default
or Configure. The ODBC Driver Setup dialog box.

Tip Enter any other information required to configure the selected driver.

3. Click OK.

Tip The driver writes the values of each field to the ODBC.INI file.
These values are the default values of a connection to the data source. The
default values can be changed by modifying the data source fields. Entries
can be inserted manually in the appropriate data source section of the
ODBC.INI file for any attribute that is not supported by the ODBC Driver
Setup dialog box.

Option Description
Data Source Name User-defined name that identifies the data source.
Description User-defined description of this data source.
Database Directory Identify the directory that contains the database

files. If none is specified, the current working
directory is used.
InTouch SQL Access Manager User’s Guide

Configuring and Connecting Databases 9
C H A P T E R 2

Configuring and Connecting
Databases

SQL Access Manager supports databases developed in Oracle, Microsoft SQL
Server, and Microsoft Access. Each database's requirements are unique and
particular. This chapter includes separate sections for each database, describing
how to configure the particular database for communication with SQL Access
Manager.

Contents
• Using Oracle 8.0

• Using Microsoft SQL Server

• Using Microsoft Access

• Data Type Values for Supported Databases

Using Oracle 8.0
To communicate with Oracle 8.0

1. Verify that the Oracle OLEDB Provider (MSDAORA.DLL) exists on your
InTouch client machine. This file is installed by MDAC, which is installed
when you install InTouch.

2. Connect to Oracle by executing the SQLConnect() function in an InTouch
action script.

For more information on the usage of SQLConnect(), see Chapter 4,
"Using SQL Functions."

SQLConnect() Format
The SQLConnect() function is used to connect to Oracle databases. The
connection string used by the SQLConnect() function is formatted as follows:
SQLConnect(ConnectionId,"<attribute>=<value>;

<attribute>=<value>;...");
InTouch SQL Access Manager User’s Guide

10 Chapter 2
The following describes the attributes used by Oracle:

Example
SQLConnect(ConnectionId,"Provider=MSDAORA; Data

Source=OracleServer; User ID=SCOTT;

Password=TIGER;");

Logging Date and Time to an Oracle Date Field
To log the date and time to an Oracle date field, you must Configure the Bind
List using the delim function.

To log both date and time to an Oracle date field

1. In the Application Explorer under SQL Access Manager, double-click
Bind List. The Bind List Configuration dialog box appears.

2. In the Tagname.FieldName box, type the tagname that you want to use.

3. In the Column Name box, type the DATE_TIME delim() function.

4. In your InTouch application, create a QuickScript to prepare input data
from present date and time. For example:

Attribute Value
Provider MSDAORA
User ID User name.
Password Password.
Data Source Oracle Server machine name
InTouch SQL Access Manager User’s Guide

Configuring and Connecting Databases 11
DATE_TIME_TAG = "TO_DATE('" + $DateString + "" +
StringMid($TimeString,1,8) + "','mm/dd/yy
hh24:mi:ss')";

Tip The Date_Time_Tag will display as the following in runtime:

TO_DATE('08/22/97 23:32:18' ,'mm/dd/yy hh24:mi:ss')

Using Microsoft SQL Server
To communicate with Microsoft SQL Server

1. Configure the Windows database client.

2. Connect to Microsoft SQL Server by executing the SQLConnect()
function in an InTouch QuickScript.

For more information on the usage of SQLConnect(), see Chapter 4,
"Using SQL Functions."

Configuring the Client

SQLConnect() Format
The SQLConnect() function is used to connect to Microsoft SQL Server.
Executing this function logs you onto the database server and opens a
connection to allow other SQL functions to be executed. The connection string
used by the SQLConnect() function is formatted as follows:
SQLConnect(ConnectionId,"<attribute>=<value>;

<attribute>=<value>;...");

The following describes the attributes used by Microsoft SQL Server:

Example
SQLConnect(ConnectionId,"DSN=SQL_Data;UID=OPERATOR;PWD=XYZ

Z");

Attribute Value
Provider SQLOLEDB
DSN The name of the data source as configured in

Microsoft ODBC Administrator.
UID Logon ID, case sensitive.
PWD Password, case sensitive.
SRVR Name of the server computer with the database tables

to be accessed.
DB The database name to be accessed.
InTouch SQL Access Manager User’s Guide

12 Chapter 2
Data Types Supported
SQL Access Manager associates the four data types in InTouch (discrete,
integer, real, and message) with other data types in database systems. The char
data type contains fixed length character strings. InTouch Message tagnames
require a char data type. A field length must be specified. Microsoft SQL
Server databases support a char field with a maximum length of 8,000
characters. However, InTouch Message tagnames are limited to 131 characters.
If a message variable contains more characters than the length specified for a
database field, the string will be truncated when inserted into the database.

The int data type represents InTouch Integer tagnames. If a field length is not
specified, the length is set to the default value of the database. If the length is
specified, it will be in the form Width. The Width determines the maximum
number of digits for the column.

The float data type represents InTouch Real tagnames. The field length setting
is fixed by the database. A field length for this data type is not required.

Using Microsoft Access
To communicate with Microsoft Access, you must connect to it by executing
the SQLConnect() function in an InTouch QuickScript.

SQLConnect() Format
The SQLConnect() function is used to connect to Microsoft Access databases.
Executing this function logs you on to the database server and opens a
connection to allow other SQL functions to be executed. The connection string
used by SQLConnect() is formatted as follows:
SQLConnect(ConnectionId,"<attribute>=<value>;

<attribute>=<value>;...");

DSN is an attribute used by Microsoft Access and is the name of the data
source as configured in the Microsoft ODBC Administrator.

Example
SQLConnect(ConnectionId,"DSN=MSACC");

String Length
The valid data types that SQL Access Manager supports depends on the
version of the ODBC driver being used. The text data type contains fixed
length character strings and are used with InTouch Message tagnames. A
length must be specified. Microsoft Access databases support text fields with a
maximum length of 255 characters. InTouch Message tagnames are limited to
131 characters. If a message variable contains more characters than the length
specified for a database field, the string will be truncated when inserted into the
database. The Microsoft Access ODBC driver supports up to 17 characters per
column name. The maximum number of columns supported when using
SQLSetStatement(Select Col1, Col2, ...) is 40.
InTouch SQL Access Manager User’s Guide

Configuring and Connecting Databases 13
Data Type Values for Supported Databases

Oracle

Microsoft SQL Server

Microsoft Access 2000

Data Type Length Default Range Tag Type
char 2,000 characters 1 character Message
number 38 digits 38 digits Integer

Data Type Length Default Range Tag Type
char 8,000

characters
 Message

int -2,147,483,648
to
2,147,483,647

Integer

float 15 digits -1.79E+308 to
1.79E+308

Real

Data Type Length Default Range Tag Type
text 255

characters
Message

number Integer
number Real
InTouch SQL Access Manager User’s Guide

14 Chapter 2
InTouch SQL Access Manager User’s Guide

Configuring SQL Access Manager 15
C H A P T E R 3

Configuring SQL Access
Manager

The SQL Access Manager utility program creates Bind Lists and Table
Templates. The Bind List associates database columns with tagnames in the
InTouch Tagname Data Dictionary. The Table Template defines the structure
and format of a new table in the database.

Contents
• SQL Access Manager Overview

• Using Special Delimiters

• Configuring a Table Template

• The SQL.DEF File

SQL Access Manager Overview
When an InTouch application executes a SQLCreateTable() command, the
Table Template argument defines the structure of the new database file.
InTouch SQL Access Manager User’s Guide

16 Chapter 3
When a SQLInsert(), SQLSelect() or SQLUpdate() is executed, the Bind
List argument defines which InTouch tagnames are used and which database
columns to associate.

Configuring a Bind List
The Bind List associates database columns with tagnames in the InTouch Data
Dictionary.

To create a new Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind
List, or in the Application Explorer under SQL Access Manager, double-
click Bind List.

2. Click New.
InTouch SQL Access Manager User’s Guide

Configuring SQL Access Manager 17
3. The Bind List Configuration dialog box appears.

Tip If you right click the mouse in any of the text entry boxes, a menu
appears displaying the commands that you can apply to the selected text.

4. In the Bind List Name box, type the Bind List Name.

Tip A Bind List Name can be up to 32 characters in length. The new Bind
List links database columns to InTouch tagnames. For example, if an
employee demographic list is being created, you would enter the Bind List
Name that associates information on the employees here.

Note The SQLInsert(), SQLSelect(), and SQLUpdate() functions use
the Bind List parameter.

5. In the Tagname.FieldName box, type an InTouch tagname.field name.

Tip The Tagname Dictionary associates this tagname.field with the
Column Name in the database. If this tagname is not currently defined in
the Tagname Dictionary, double-click it to open the Tagname Dictionary
dialog box and define it now.

6. Click Tagname to select an existing tagname. The Tag Browser appears.

Tip The Tag Browser will display the tagnames for the currently selected
tag source. To select a tagname, double-click it or select it, and then click
OK. To select a .field for the tagname click the Dot Field arrow, and
select the .field that you want to use, and then click OK.
InTouch SQL Access Manager User’s Guide

18 Chapter 3
Note I/O type tagnames that are not used in your application, but are
specified in a SQLAccess bind list, will be activated (advised to the I/O
Server) as soon as WindowViewer starts up. No connect to a database is
necessary to see this behavior.

For more information on the Tag Browser, see your online InTouch User's
Guide.

7. Click FieldName to append a .field to the tagname. The Choose field
name dialog box appears.

8. Click the .field that you want to use. The dialog box will close and the
.field will automatically be appended to the tagname in the
Tagname.FieldName field.

For more information on tagname .fields, see Chapter 4 in your InTouch
User's Guide.

9. In the Column Name box, type the name of the column.

Tip A Column Name can be up to 30 characters in length. The column
name is directly associated with the database column name. If the Column
Name has a space, use square brackets around the Column Name in the
Bind List and when used in a script. For example:

WHERE EXPR= "[Pipe Flow} = " + text (tagname,"#");

Tip Special Delimiters can also be used to associate your column name
with your database.

For more information on special delimiters, see "Using Special
Delimiters"

10. Click Move Up to move the selected tagname up one level in the list.

11. Click Move Down to move the selected tagname down one level in the
list.

12. Click Add Item to add your new Tagname.FieldName and Column
Name to the Bind List.

13. Click Delete Item to delete a selected Tagname.FieldName and Column
Name from the Bind List.

14. Click Modify Item to modify a selected Tagname.FieldName or
Column Name for this Bind List.

15. Click OK to save your new Bind List configuration and close the dialog
box.

Tip You can click Save to save your settings without closing the dialog
box.

To modify a Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind
List, or in the Application Explorer under SQL Access Manager, double-
click Bind List.
InTouch SQL Access Manager User’s Guide

Configuring SQL Access Manager 19
2. The Select a Bind List dialog box appears.

3. Select the Bind List name that you want to change, and then click Modify.
The Bind List Configuration dialog box appears.

4. Modify the required item(s).

5. Click OK to save your changes and close the dialog box.
For more information on configuring a Bind List, see "To create a new Bind
List."

To delete a Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind
List, or in the Application Explorer under SQL Access Manager, double-
click Bind List.

2. The Select a Bind List dialog box appears.

3. Select the Bind List name that you want to delete.

4. Click Delete. A message box appears asking you to confirm your deletion.
Click Yes to delete the selected Bind List, or click No to cancel the
deletion. The Bind List Configuration dialog box reappears.

5. Click OK to close the dialog box.

Using Special Delimiters
The SQLInsert() and the SQLUpdate() functions use a default format that
encloses message strings with single quotes. Some SQL databases expect to
receive message strings enclosed by another type of delimiter. For example,
Oracle expects to receive a date string surrounded by brackets. When this
occurs, the Delim() function must be used as follows:

In the Bind List Configuration dialog box Column Name field, after the
column name, type the keyword "delim" (not case sensitive). The keyword
"delim" must be entered followed by:

• a left parenthesis

• the left delimiter

• a comma
InTouch SQL Access Manager User’s Guide

20 Chapter 3
• the right delimiter

• a right parenthesis

Example: datestring delim (‘,‘)

To use the same delimiter for both left and right, just specify the delimiter in
parentheses without the comma.

Example: datestring delim (‘ ‘)

The following example uses different left and right delimiters. Notice where
date delim (‘,’) is entered in the Column Name field.

For more information on logging date and time to an Oracle date field, see
Chapter 2, "Configuring and Connecting Databases."

Configuring a Table Template
This command creates a Table Template defining the structure and format of a
new table in the database.
InTouch SQL Access Manager User’s Guide

Configuring SQL Access Manager 21
To create a new Table Template

1. On the Special menu, point to SQL Access Manager, and then click
Table Template, or in the Application Explorer under SQL Access
Manager, double-click Table Template.

2. Click New.

3. The Table Template Configuration dialog box appears.

Tip If you right click the mouse in any of the text entry boxes, a menu
appears displaying the commands that you can apply to the selected text.

4. In the Table Template Name box, type the name of the Table Template.

Note A Table Template Name can be up to 32 characters in length. If you
are creating an index, unique or otherwise, the Table Template Name can
not exceed 24 characters. The Table Template name is used to identify
the structure of a database for the SQLCreateTable() function.

5. In the Column Name box, type the column name for the Table Template.
A Column Name can be up to 30 characters in length.
InTouch SQL Access Manager User’s Guide

22 Chapter 3
6. In the Column Type box, type the data type for the column. Data type
selections vary according to the database being used.

For more information on data types for a specific database, see Chapter 2,
"Configuring and Connecting Databases."

7. Select the Index Type as follows:

Unique
A column requires that each value in that column be unique.

Non-Unique
A column does not require that each value in that column be unique.

None
No Index.

Tip When you execute a SQLCreateTable(), an index file is
automatically created.

8. Select Allow Null Entry to allow null data to be entered in this column.

Note InTouch does not support null data.

When inserting data, if a value has not been entered for a tagname, values
will be:

When selecting data, null values will be translated according to the data
type as shown above.

9. Click Add Item to add your new Column Name, Column Type, Length
and Index Type to the Table Template.

10. Click Delete Item to delete a selected Column Name, Column Type,
Length and Index Type from the Table Template list.

11. Click Modify Item to modify a selected Column Name, Column Type,
Length and Index Type in the Table Template list.

12. Click OK to save your new Table Template configuration and close the
dialog box.

Tip You can click Save to save your settings without closing the dialog
box.

To modify a Table Template

1. On the Special menu, point to SQL Access Manager, and then click
Table Template, or in the Application Explorer under SQL Access
Manager, double-click Table Template.

Data Type Value
Discrete 0
Integer 0
Message Strings with no characters
InTouch SQL Access Manager User’s Guide

Configuring SQL Access Manager 23
2. The Select a Table Template dialog box appears.

3. Select the Table Template name that you want to modify, and then click
Modify. The Table Template Configuration dialog box appears.

4. Modify the required item(s).

5. Click OK to save your changes and close the dialog box.

For more information on configuring a Table Template, see "To create a
new Table Template."

To delete a Table Template

1. On the Special menu, point to SQL Access Manager, and then click
Table Template, or in the Application Explorer under SQL Access
Manager, double-click Table Template.

2. The Select a Table Template dialog box appears.

3. Select the Table Template name that you want to delete

4. Click Delete. A message box appears asking you to confirm your deletion.
Click Yes to delete the selected Bind List, or click No to cancel the
deletion. The Table Template Configuration dialog box reappears.

5. Click OK to close the dialog box.

The SQL.DEF File
The SQL Access Manager saves the configuration information for the Bind
Lists and Table Templates to a file named "SQL.DEF." This file is formatted as
a comma-separated variable (.CSV) type file. The SQL.DEF file can be viewed
or modified using SQL Access Manager or any text editor, such as Notepad.
The data appears in the file as follows:

:BindListName,BindListName

Tagname1.FieldName,ColumnName1

Tagname2.FieldName,ColumnName2

Tagname3.FieldName,ColumnName3
InTouch SQL Access Manager User’s Guide

24 Chapter 3
:TableTemplateName,TableTemplateName

ColumnName1,ColumnType,[ColumnLength],Null,Index

ColumnName2,ColumnType,[ColumnLength],Null,Index

ColumnName3,ColumnType,[ColumnLength],Null,Index
InTouch SQL Access Manager User’s Guide

Using SQL Functions 25
C H A P T E R 4

Using SQL Functions

InTouch uses SQL Functions to interact with information in the database.
These functions are an extension of the standard InTouch QuickScript
functions and can be used in any script. They allow you to select, modify,
insert or delete records in the tables you choose to access.

Contents
• SQL Functions

• SQL Parameters

• Using SQL Functions in InTouch QuickScripts\

SQL Functions
This section lists each SQL Function. Keep in mind that SQL actions are
synchronous. Control is not returned to InTouch until the SQL activity is
complete (InTouch trending, polling, etc. are suspended).

All SQL Functions (with the exception of SQLNumRows()) return a
ResultCode. If the ResultCode is non-zero, the function failed and other actions
should be taken. The ResultCode can be used by the SQLErrorMsg()
function.

The general format for SQL Functions is as follows:
SQLFunction(Parameter1, Parameter2,...)

For complete details on each SQL function and examples of how you use each
function, see your InTouch Reference Guide.

Function

SQLAppendStatement(ConnectionId,
SQLStatement)
Append the statement SQLStatement to the default SQL statement for
ConnectionId.
InTouch SQL Access Manager User’s Guide

26 Chapter 4
SQLClearParam(StatementId, ParameterNumber)
Set the value of ParameterNumber associated with StatementId to zero or a
zero-length string, depending on whether the parameter is of numeric or string
type.

SQLClearStatement(ConnectionId, StatementId)
Clean up resources associated with StatementId. However, the default
statement associated with ConnectionId remains intact.

SQLClearTable(ConnectionId, TableName)
Delete all rows in the table named TableName.

SQLCommit(ConnectionId)
Commit the transaction that was created by the last SQLTransact.

SQLConnect(ConnectionId, ConnectString)
The ConnectString parameter is the same ConnectionString as explained in
most ADO documentations (probably most extensively by Microsoft ADO
API Reference). It is a parameter that may need to be modified in any InTouch
application to leverage the power of native OLE DB provider for a particular
database management system.

A general form of the ConnectString parameter consists of different
components separated by semicolons. The first component is normally
specified as Provider=ProviderName, where ProviderName is the OLE DB
provider for the particular database system. The SQLConnect functions in
existing InTouch applications do not have the Provider keyword in the
ConnectString parameter, thus ADO will use the default provider, Microsoft
OLE DB Provider for ODBC, which is MSDASQL.DLL. Although existing
InTouch applications will continue to work, it is highly recommended that the
ConnectString parameter be changed to use the native OLE DB provider.
Examples of ConnectString include the following:

Example 1

Microsoft OLE DB Provider for Microsoft Jet (recommended use)

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=d:\DBName.mdb;User
ID=UserIDStr;Password=PasswordStr;"

Microsoft.Jet.OLEDB.4.0 is the native OLE DB Provider for Microsoft Jet
(Microsoft Access Database engine).

Example 2

Microsoft OLE DB Provider for ODBC (using the default provider
MSDASQL for MS Access):

"Provider=MSDASQL;DSN=DSNStr;UID=UserName;PWD=PasswordStr;"
InTouch SQL Access Manager User’s Guide

Using SQL Functions 27
Note User ID and uid can be used interchangeably, and Password and pwd
can be used interchangeably. However, as stated above, it is recommended that
the ConnectString parameter uses Microsoft.Jet.OLEDB.4.0.

Example 3

Microsoft OLE DB Provider for SQL Server (recommended use)

"provider=sqloledb;Data Source=MyServer;Initial Catalog=MyDB;User
Id=sa;Password=;"

The OLE DB Provider for SQL Server is sqloledb.

Example 4

Microsoft OLE DB Provider for SQL Server (recommended use)

"Provider=SQLOLEDB;uid=sa;pwd=;Database=MyDB"

Example 5

Microsoft OLE DB Provider for ODBC (using the default provider
MSDASQL for SQL Server):

"DSN=Pubs;UID=sa;PWD=;"

Example 6

Microsoft OLE DB Provider for ODBC (using the default provider
MSDASQL for SQL Server):

"Data Source=Pubs;User ID=sa;" "Password=;"

Note Data Source and Server can be used interchangeably, and Initial Catalog
and Database can be used interchangeably.

Example 7

Microsoft OLE DB Provider for Oracle (recommended use)

"Provider=MSDAORA;Data Source=ServerName;User ID=UserIDStr;
Password=PasswordStr;"

If SQLTrace=1 is defined under the [InTouch] section of the win.ini file, each
successful execution of SQLConnect will log version information for the
ADO, the provider and the database system to the Wonderware logger.

SQLCreateTable(ConnectionId, TableName,
TemplateName)
Create a table named TableName using the TemplateName.

SQLDelete(ConnectionId, TableName,
WhereExpr)
Delete the rows that match the WhereExpr clause from TableName.
InTouch SQL Access Manager User’s Guide

28 Chapter 4
SQLDisconnect(ConnectionId)
Disconnect from the database and clean up all resources that were created by
SQLPrepareStatement and SQLInsertPrepare that have not yet been released
(by executing SQLClearStatement and SQLInsertEnd).

SQLDropTable(ConnectionId, TableName)
Delete the table named TableName from the database.

SQLEnd(ConnectionId)
Clean up resources associated with the logical table associated with
ConnectionId.

SQLErrorMsg(ResultCode)
Return a ResultCode of -1 whenever an error is generated by the database
provider. The ResultCode returned is always -1, but the message is copied
exactly from the provider.

For a list of Result Codes and a description of the error messages, see Chapter
5, "Troubleshooting."

SQLExecute(ConnectionId, BindList, StatementId)
Execute the statement associated with StatementId (MS Access query, MS
SQL Server stored procedure, or a textual SQL statement). The BindList
parameter can be a zero-length string. If StatementId is associated with a row-
returning query, then the logical table is updated with the result of
SQLExecute. If a real bind list is specified, then the result is associated with
the BindList. A zero-length BindList is useful when it is known in advance that
the StatementId is not associated with a row-returning query.

SQLFirst(ConnectionId)
Go to the first row of the logical table and fetch values of that row into InTouch
tags.

SQLGetRecord(ConnectionId, RecordNumber)
Go to row number RecordNumber of the logical table and fetch values of that
row into InTouch tags.

SQLInsert(ConnectionId, TableName, BindList)
Use the current values of InTouch tags to insert one row into TableName.

SQLInsertEnd(ConnectionId, StatementId)
Clean up resources associated with StatementId created by SQLInsertPrepare.
InTouch SQL Access Manager User’s Guide

Using SQL Functions 29
SQLInsertExecute(ConnectionId, BindList,
StatementId)
Use the current values of InTouch tags to insert one row into the table
identified by the previous SQLInsertPrepare. If the BindList includes an
Identity key field for a MS SQL Server table, it is necessary to set the
IDENTITY_INSERT option before running SQLInsertExecute.

Example

Inserting a row with an identity key that is part of a BindList:
ResultCode = SQLSetStatement(ConnectionId, "SET

IDENTITY_INSERT Products ON");

ResultCode = SQLExecute(ConnectionId, "", 0);

ResultCode = SQLInsertPrepare(ConnectionId, TableName,
Bindlist, StatementId);

ResultCode = SQLInsertExecute(ConnectionId, Bindlist,
StatementId);

ResultCode = SQLInsertEnd(ConnectionId, StatementId);

SQLInsertPrepare(ConnectionId, TableName,
BindList, StatementId)
Return a StatementId to be used in SQLInsertExecute and SQLInsertEnd.

SQLLast(ConnectionId)
Go to the last row of the logical table and fetch values of that row into InTouch
tags.

SQLLoadStatement(ConnectionId, FileName)
Load the statement contained in the file FileName into the default statement
for ConnectionId.

SQLManageDSN(ConnectionId)
The ConnectionId is not used. It is retained for backward compatibility of older
versions of SQL Access. Therefore, any number can be passed into the
function. No database connection needs to be established before this function
can be called.

Example
SQLManageDSN(0)

SQLNext(ConnectionId)
Go to the next row of the logical table and fetch values of that row into
InTouch tags.
InTouch SQL Access Manager User’s Guide

30 Chapter 4
SQLNumRows(ConnectionId)
Return the number of rows of the logical table. Because this function may
return an error code, the recommended use of the function is as follows:
DIM TEMP AS INTEGER;

TEMP = SQLNumRows(ConnectionId);

IF (TEMP >= 0) THEN
RowCount = TEMP;

ELSE
ResultCode = TEMP;

ENDIF;

Definition

A default statement is a statement associated with a connection ID. It can be a
textual SQL statement (SELECT, INSERT, DELETE, or UPDATE), the name
of a query in MS Access (with or without parameters), or the name of a stored
procedure in MS SQL Server (with or without parameters). The default
statement is modified by SQLLoadStatement, SQLSetStatement and
SQLAppendStatement and is used by SQLExecute whenever StatementId = 0
is specified.

SQLPrepareStatement(ConnectionId,
StatementId)
Prepare the default statement and return a StatementId (1, 2, 3, and so on). This
preparation is useful for statements with parameters that need to be set using
the SQLSetParam{Type} functions. SQLHandle is specified as the second
parameter to this function in older versions of SQL Access; however, the
current version of SQL Access renames SQLHandle into StatementId for all
functions. The functional behavior remains the same.

SQLPrev(ConnectionId)
Go to the previous row of the logical table and fetch values of that row into
InTouch tags.

SQLRollback(ConnectionId)
Roll back the transaction that was created by the last SQLTransact.

SQLSelect(ConnectionId, TableName, BindList,
WhereExpr, OrderByExpr)
Instructs the database to retrieve information from a table. When a
SQLSelect() function is executed, a temporary Results Table is created in
memory, containing records that can be browsed using SQLFirst(),
SQLLast(), SQLNext(), SQLNumRows and SQLPrev().

Execute the statement:
SELECT FROM TableName WHERE WhereExpr ORDER BY OrderByExpr
InTouch SQL Access Manager User’s Guide

Using SQL Functions 31
If the statement is executed successfully, a temporary record set (referred to as
the logical table) is created and the BindList is used to associate InTouch tags
with the columns of this table in preparation for SQLFirst, SQLPrev,
SQLNext, SQLLast, and SQLNumRows. This logical table remains valid even
if it has no row. For example, if WhereExpr is False for all records.

SQLSetParamChar(StatementId,
ParameterNumber, Value, Length)
Set the parameter ParameterNumber associated with StatementId to a
character string value (the string can be a single character). The last parameter
to the function specifies the maximum length of the parameter. If the length of
Value is longer than the length specified, Value will be truncated to the
specified length. If length is specified as 0, the entire length of Value will be
used.

SQLSetParamDate(StatementId,
ParameterNumber, Value)
Set the parameter ParameterNumber associated with StatementId to a date
value. The time is considered as 12:00:00 AM (the beginning of the date
specified).

SQLSetParamDateTime(StatementId,
ParameterNumber, Value, Precision)
Set the parameter ParameterNumber, associated with StatementId, to a
date/time value.

SQLSetParamDecimal(StatementId,
ParameterNumber, Value, Precision, Scale)
Set the parameter ParameterNumber, associated with StatementId, to a decimal
value. Value can be either a string (or an InTouch message tag) that represents a
decimal number (123.456) or a numeric value (or an InTouch memory real
tag). It is recommended that a message tag is used instead of a real tag to
guarantee the precision of the parameter. However, if Value must be a floating
point number (for example, a real value received from an I/O server), then the
function will continue to work, but high precision may not be guaranteed
because of the limitation of floating point representation. Precision is the total
number of digits in the number, and Scale is the number of digits to the right of
the decimal point.

SQLSetParamFloat(StatementId,
ParameterNumber, Value)
Set the parameter ParameterNumber, associated with StatementId, to a 64-bit,
signed, floating-point value.
InTouch SQL Access Manager User’s Guide

32 Chapter 4
SQLSetParamInt(StatementId,
ParameterNumber, Value)
Set the parameter ParameterNumber, associated with StatementId, to a 16-bit,
signed, integer value.

SQLSetParamLong(StatementId,
ParameterNumber, Value)
Set the parameter ParameterNumber, associated with StatementId, to a 32-bit,
signed, integer value.

SQLSetParamNull(StatementId,
ParameterNumber, Type, Precision, Scale)
Set the parameter ParameterNumber, associated with StatementId, to NULL.

The Type parameter can have the following value:

0: string

1: date/time

2: integer

3: float

4: decimal

Comparison with NULL value is controlled by the ANSI_NULLS option in
MS SQL Server. The time of resolving this option depends on the database
system. In SQL Server 7.0, this option is resolved at object creation time (not
at query execution time). When a stored procedure is created in SQL Server
7.0, this option is ON by default and thus a clause such as "WHERE MyField =
NULL" always returns NULL (FALSE) and no row is returned from a
SELECT statement using this clause. In order for the comparison = or <> to
return TRUE or FALSE, it is necessary to set the option to OFF when creating
the stored procedure. If the ANSI_NULLS is not set to OFF, then
SQLSetParamNull will not work as expected. In this case, comparison against
NULL value should use the syntax "WHERE MyField IS NULL" or "WHERE
MyField IS NOT NULL".

Example

Using SQLSetParamNull to return all rows in the Products table where the
ProductName is not NULL.

Suppose a stored procedure is created in SQL Server using the following text.
SET ANSI_NULLS OFF

GO

CREATE PROCEDURE sp_TestNotNull @ProductParam varchar(255)

AS SELECT * FROM Products WHERE ProductName <>
@ProductParam

GO

SET ANSI_NULLS ON
InTouch SQL Access Manager User’s Guide

Using SQL Functions 33
GO

InTouch can execute the following SQL Access scripts.
ResultCode = SQLSetStatement(ConnectionId,

"sp_TestNotNull");

ResultCode = SQLPrepareStatement(ConnectionId,
StatementId);

ResultCode = SQLSetParamNull(StatementId, 1, 0, 0, 0);

ResultCode = SQLExecute(ConnectionId, BindList,
StatementId);

ResultCode = SQLFirst(ConnectionId);

ResultCode = SQLClearStatement(ConnectionId, StatementId);

SQLSetParamTime(StatementId,
ParameterNumber, Value)
Set the parameter ParameterNumber, associated with StatementId, to a time
value. The system current date is used along with the time specified.

SQLSetStatement(ConnectionId, SQLStatement)
Set the statement SQLStatement into the default SQL statement for
ConnectionId.

SQLTransact(ConnectionId)
Begin a database transaction. Transactions can be nested as supported by the
underlying OLE DB provider for the database system. For example, native
OLE DB provider for Microsoft Jet supports transactions nested up to five
levels, including the first and last transactions.

SQLUpdate(ConnectionId, TableName, BindList,
WhereExpr)
Use the current values of InTouch tags to update all rows in the table named
TableName matched by the WhereExpr clause.

SQLUpdateCurrent(ConnectionId)
Update the current row of the logical table using InTouch tags mapped to the
table fields via the bind list specified in SQLSelect or SQLExecute. If there are
rows that are identical to the current row, all of them will be updated. If there
are too many identical rows to be updated in SQL Access, this function may
return an error after updating a number of rows. The error message may be
similar to, "Microsoft Cursor Engine: Key column information is insufficient
or incorrect. Too many rows were affected by update." Up to 54 identical rows
may be modified at once.
InTouch SQL Access Manager User’s Guide

34 Chapter 4
To avoid this situation, create a unique key field in the table so that no rows are
identical. It is strongly recommended that all tables used by SQL Access have
a unique key. For a table without a key, it is recommended that a field of type
AutoNumber (MS Access) or an integer field used as the row Identity (SQL
Server) be used as the primary key so that SQLUpdateCurrent affects only one
row. This primary key field does not have to be included in a BindList.

SQL Parameters
The following describes the parameters required for each SQL function. When
a parameter is entered in a script surrounded by quotation marks
("Parameter1") that exact string will be used. If no quotation marks are used,
Parameter1 is assumed to be a tagname and the system will access the InTouch
tagname dictionary for the value of the tagname, Parameter1.

Example
"c:\main\file" vs. Location

where: location is an InTouch message tagname

"c:\main\file" is a literal string

The parameters for most of the SQL functions will be one or more of the
following:

BindList
Corresponds to one of the Bind List names in the SQL.DEF file.

ConnectionID
Memory integer tagname created by the user to hold the number (ID) assigned
by the SQLConnect function to each database connection.

ConnectString
String that identifies the database and any additional logon information used in
SQLConnect().

ErrorMsg
Message variable containing a text description of the error message.

For more information on error message descriptions, see Chapter 5,
"Troubleshooting."

FileName
The name of the file name in which the information is contained.
InTouch SQL Access Manager User’s Guide

Using SQL Functions 35
MaxLen
Maximum size of the column with which this parameter is associated. This
setting determines whether the parameter is of varying character or long
varying character type. If MaxLen is less than or equal to the largest character
string allowed by the database, then the parameter is varying character type. If
greater, long varying character type.

OrderByExpression
Defines the columns and direction for sorting. Only column names can be used
to sort. The expression must be formatted:

ColumnName [ASC|DESC]

To sort the selected table by a column name (e.g., manager) in ascending order:

"manager ASC"

To sort by multi-columns, the expression is formatted:

ColumnName [ASC|DESC],
ColumnName [ASC|DESC]

To sort a selected table by one column name (for example, temperature) in
ascending order and another column name (for example, time) in descending
order:

"temperature ASC, time DESC"

ParameterNumber
Actual parameter number in the statement.

ParameterType
Data type of the specified parameter. Valid values:

Type Description
Char Blank Padded fixed length string
Var Char Variable Length String
Decimal BCD Number
Integer 4-byte signed integer
Small integer 2-byte signed integer
Float 4-byte floating point
Double Precision Float 8-byte floating point
DateTime 8-byte date time value
Date 4-byte date time value
InTouch SQL Access Manager User’s Guide

36 Chapter 4
ParameterValue
Actual value to set.

Precision
Is the decimal value's precision, the max. size of the character, or the length in
bytes of the date-time value.

RecordNumber
Actual record number to retrieve.

ResultCode
Integer variable returned from most SQL functions. ResultCode is returned as
zero (0) if the function is successful and a negative integer if it fails.

For more information, see Chapter 5, "Troubleshooting."

Scale
Is the decimal value's scale. This value is required only if applicable to the
parameter being set to null.

StatementId
When using the advanced functionality statements, SQL returns a StatementId,
which it uses internally.

SQLStatement
Actual statement, for example:
ResultCode=SQLSetStatement(ConnectionID,”Select LotNo,

LotName from LotInfo”);

TableName
The database table name you want to access.

TemplateName
The name of the template definition you want to use.

Time 4-byte date time value
No Type No Data Type

Type Description
InTouch SQL Access Manager User’s Guide

Using SQL Functions 37
WhereExpression
Defines a condition that can be either true or false for any row of the table. The
command extracts only those rows from the table for which the condition is
true. The expression must be in the following format:
ColumnName comparison_operator expression

Note If the column is a character data type, the expression must be in single
quotes.

The following example will select all rows whose name column contains the
value EmployeeID:
name='EmployeeID'

The following example will select all rows containing part numbers from 100
to 199:
partno>=100 and partno<200

The following example will select all rows whose temperature column contains
a value that is greater than 350:
temperature>350

Using SQL Functions in InTouch QuickScripts
SQL functions can be automatically inserted into InTouch QuickScripts by
clicking on the Add-ons button within the QuickScript editor dialog. The SQL
function will be automatically inserted into the script at the current cursor
position.

For complete details on InTouch QuickScripts see your InTouch User's Guide,
Chapter 6, "Creating QuickScripts in InTouch."

Specifying Complex Queries
SQL Access Manager allows you to specify complex queries and SQL
statements of your own design. These queries may either be built dynamically
or be contained in external files. Additionally, these queries may contain
parameters that need to be "passed" into the query at runtime. These queries
must then be executed and possibly have result sets returned. The SQL Access
Manager API allows you to execute whatever SQL statement your database
can handle and retrieve the result of that query. As a by-product, stored
procedures are also available for execution by you. (Stored procedures are not
fully supported.)
For more information on stored procedures, see "Supporting Stored
Procedures."
InTouch SQL Access Manager User’s Guide

38 Chapter 4
Building Queries Dynamically
To build queries dynamically, two additional functions are required:
SQLSetStatement() and SQLAppendStatement(). SQLSetStatement()
starts a new SQL statement. This can be any valid SQL statement, including
the name of a stored procedure. Since InTouch only supports character strings
of 131 characters, SQLAppendStatement() is provided to concatenate
additional strings onto the statement.

Note Bold text refers to SQL Query language commands.

Example
ResultCode = SQLSetStatement (ConnectionID, "Select LotNo,

LotName, LotDescription, LotQuantity from LotInfo,
ProductionInfo");

ResultCode = SQLAppendStatement (ConnectionID, " where
LotInfo.LotNo = ProductionInfo.LotNo");

ResultCode = SQLAppendStatement (ConnectionID, " order by
LotNo,NotName,LotQuantity");

The statement is now ready for execution.

Note Many database column and table names are case sensitive. For the
above script to function properly, the column and database names must be
typed exactly as used in the database tables.

Reading SQL Statements from a File
You can model your query in other packages such as, Microsoft Access and
other 3rd party database tools, then use SQL Access for InTouch to perform
your query. As several of these packages will generate the SQL statement, it's a
simple matter to take that SQL statement and store it into a file by using the
SQLLoadStatement().

Example
ResultCode = SQLLoadStatement (ConnectionID,

"c:\myappdir\lotquery.sql");

The statement is now ready for execution.

Modifying Extended SQL Statements
To provide full SQL functionality, SQL Access Manager allows you to specify
a where clause that contains a value of an InTouch tagname. To allow runtime
specification of SQL parameters, the following functions are provided:

• SQLPrepareStatement()

• SQLSetParamType()

• SQLClearStatement()

• SQLClearParam()
InTouch SQL Access Manager User’s Guide

Using SQL Functions 39
To perform parameter substitution on a SQL statement, put a "?" in the SQL
statement where you want to specify a parameter at a later date. The statement
is "prepared," parameters are "set" into the statement, and then the statement is
executed.

SQLPrepareStatement() prepares the statement for execution. It does not
execute the statement, it just makes the statement active so you can set
parameter values. SQLSetParamType() is a set of functions that allow you to
set values into parameters in the SQL statement.

Example
ResultCode = SQLSetStatement (ConnectionID, "Select LotNo,

LotName, LotDescription, LotQuantity from LotInfo,
ProductionInfo");

ResultCode = SQLAppendStatement (ConnectionID, " where
LotInfo.LotNo = ?");

ResultCode = SQLAppendStatement (ConnectionID, " order by
LotNo,NotName,LotQuantity");

ResultCode = SQLPrepareStatement (ConnectionID,
StatementId);

{return the statement handle into tag 'StatementId'}

ResultCode = SQLSetParamInt (StatementId, 1,
tagLotNumber);

{put the value of tagLotNumber into param}

Since the statement only has one parameter, it is now ready for execution.

Once the statement is executed and you are finished with the prepared
statement, SQLClearStatement() can be called to free the resources
associated with that statement.

Note SQLEnd() is called to free "unnamed" SQL statements (those generated
by existing SQL Access functions), and those statements created by
SQLSetStatement() and SQLLoadStatement() and not prepared.

Executing Extended SQL Statements
Now that the statement has been either built dynamically or read from a file,
and has been optionally prepared and modified, it's time to execute it. The SQL
Access Manager API uses the SQLExecute() function to accomplish this.
SQLExecute() will either execute the currently active statement (i.e., the one
created by SQLSetStatement() or SQLLoadStatement()) or the statement
that has been previously prepared and is specified by the statement handle
parameter.

Example 1
ResultCode = SQLLoadStatement (ConnectionID,

"c:\myappdir\lotquery.sql");

ResultCode = SQLExecute (ConnectionID, "BindList", 0);

{put the results of the select into the tags specified in
BindList. prepared statement handle is zero}

ResultCode = SQLNext (ConnectionID);
InTouch SQL Access Manager User’s Guide

40 Chapter 4
{Get results of Select}

Example 2
ResultCode = SQLSetStatement (ConnectionID, "Select LotNo,

LotName, LotDescription, LotQuantity from LotInfo,
ProductionInfo");

ResultCode = SQLAppendStatement (ConnectionID, " where
LotInfo.LotNo = ?");

{question mark means I'll get back to you}

ResultCode = SQLAppendStatement (ConnectionID, " order by
LotNo,NotName,LotQuantity");

ResultCode = SQLPrepareStatement (ConnectionID,
StatementId);

{return the statement handle into tag 'StatementId'}

ResultCode = SQLSetParamInt (StatementId, 1,
tagLotNumber);

{put the value of tagLotNumber into param}

ResultCode = SQLExecute (ConnectionID, "BindList",
StatementId); {put the results of the Select into the
tags specified in

BindList prepared statement handle is in StatementId}

ResultCode = SQLNext (ConnectionID);

{Get results of Select}

Example 3

SQLSetStatement – This statement must be used for complex queries and
string expressions greater than 131 characters. When the string expression
exceeds 131 characters use the SQLAppend
SQLSetStatement(ConnectionID, “Select Speed, Ser_No from

tablename where Ser_No =’” + Serial_input + “’”);

SQLExecute(ConnectionID, "BindList", 0);

In the above example the StatementId is set to zero so the statement does not
have to call SQLPepare(Connection_Id, StatementId) before the execute
statement. Because the StatementId was not created by the SQLPepare to
properly end this select use the SQLEnd function instead of the
SQLClearStatement().
SQLSetStatement(Connection_Id, “Select Speed, Ser_No from

tablename where Ser_No =’” + Serial_input + “’”);

SQLPrepareStatement(Connection_Id, StatementId);

SQLExecute(Connection_Id, StatementId);

In the above example the StatementId is created by the SqlPrepareStatement
and used in the SQLExecute function. To end this select statement use
SQLClearStatement to free up resources and free the StatementId.
InTouch SQL Access Manager User’s Guide

Using SQL Functions 41
Supporting Stored Procedures
The SQLExecute() function supports the execution of some stored procedures.
For example, suppose you create a stored procedure on the database server
named "LotInfoProc," that contains the following select statement: "Select
LotNo, LotName from LotInfo." You would write the following InTouch
QuickScript to execute the procedure and get the results:

Using Microsoft SQL Server
ResultCode = SQLSetStatement (ConnectionID,

"LotInfoProc");

ResultCode = SQLExecute(ConnectionID, "BindList", 0);

ResultCode = SQLNext (ConnectionID);

{Get results of Select}

Using Oracle or Microsoft Access
ResultCode = SQLSetStatement (ConnectionID, "{CALL

LotInfoProc}");

ResultCode = SQLExecute(ConnectionID, "BindList", 0);

ResultCode = SQLNext (ConnectionID);

{Get results of Select}

Fetching Values into InTouch Tags
The five script functions SQLFirst, SQLPrev, SQLNext, SQLLast, and
SQLGetRecord allow navigating among rows of the logical table and fetching
field values into InTouch tags. If a field is NULL, the value of the associated
InTouch tag will be a zero or a zero-length string depending on whether the tag
is of analog or message type. If a string in the database is greater than 131
characters, only the first 131 characters are copied into the associated InTouch
message tag.

Persisting InTouch Tags into Database Field
Values

The four script functions SQLUpdate, SQLUpdateCurrent, SQLInsert, and
SQLInsertExecute allow updating or inserting into a table using InTouch tag
values. If an InTouch message tag is longer than the defined size of the
corresponding text field of the table, the number of characters used from the
message tag will be the defined size of the field. Since InTouch tags cannot be
NULL, it is impossible to update or insert NULL values into the database using
these functions if the BindList includes the field. The way to insert NULL
values into a field is to use SQLExecute on an INSERT statement that does not
include the field, which should have been defined to allow NULL values.
InTouch SQL Access Manager User’s Guide

42 Chapter 4
Implications of the Data Updating Rules
The rules for fetching values into InTouch tags and persisting data into table
fields imply that it is possible to modify values in the table unintentionally in
the following scenarios.

Unintentional Conversion of NULL Values into
Zeros or Empty Strings
Execution of one of the navigation functions fetches NULL values into
InTouch tags as zeros or zero-length strings (e.g. Tag1). After some other tags
in teh BindList are updated, execution of SQLUpdateCurrent persists the zeros
or zero-length strings back to the table, overwriting the NULL value associated
with Tag1. Execution of SQLUpdate will update rows using these zeros or
zero-length strings from Tag1 (not the NULL value).

Unintentional Insertion of Zeros or Empty
Strings into a Table
Execution of one of the navigation functions fetches NULL values into
InTouch tags as zeros or zero-length strings (e.g. Tag1). After some other tags
in the BindList are updated, execution of SQLInsert or SQLInsertExecute
persists the zeros or zero-length strings (of Tag1) into the table (not the NULL
value).
InTouch SQL Access Manager User’s Guide

Troubleshooting 43
C H A P T E R 5

Troubleshooting

This chapter explains how to troubleshoot SQL applications using the Result
Codes returned by SQL functions. The first section describes the
SQLErrorMsg() function and includes a table of SQL Result Codes with their
corresponding Error Messages. The second section includes tables with
specific database Error Messages.

Contents
• Troubleshooting Functions

• Specific Database Error Messages

• Debugging SQL Access

Troubleshooting Functions
All SQL Functions return a Result Code that can be used for troubleshooting.
The SQLErrorMsg() function returns the Error Message associated with the
Result Code.

Example
ErrorMsg=SQLErrorMsg(ResultCode);

where:

ErrorMsg is a memory message tag.

ResultCode is an integer value obtained from a previous SQL function.

Result Code Error Messages
For Result Codes that are not documented here, please refer to your specific
database documentation and be sure to check the Wonderware Logger for any
additional information.
InTouch SQL Access Manager User’s Guide

44 Chapter 5
The SQLErrorMsg() function will set the value of the InTouch message
tagname ErrorMsg. The following is a listing of some of the possible SQL
Result Codes and their corresponding error messages and descriptions:

Result Code Error Message Description
 0 No errors occurred The command was successful
-1 <Message from DB

Provider>
<A specific error message from the DB provider>

-2 An empty statement cannot
be executed

SQLExecute(ConnectionId, BindList, 0) is executed
without previously calling SQLSetStatement or
SQLLoadStatement with a non-empty statement.

-4 Value returned was Null An integer or real value read from the database is
null. This is only a warning sent to Wonderware
Logger.

-5 No more rows to fetch The last record in the table has been reached
-7 Invalid parameter ID SQLSetParamI{Type} is called with an invalid

parameter ID.
-8 Invalid parameter list Example of an invalid parameter list: 1, 2, 3, 5

(Missing 4).
-9 Invalid type for NULL

parameter
SQLSetParamNull is called with an invalid type.

-10 Changing data type of
parameter is not allowed

SQLSetParam {Type} is called with a different type
for an existing parameter.

-11 Adding parameter after the
statement has been executed
successfully is not allowed.

SQLSetParam {Type} is called for a new parameter
ID after the statement has been executed
successfully.

-12 Invalid date time format An invalid date time format is encountered, for
example, when executing SQLSetParamTime,
SQLInsertExecute, or SQLUpdateCurrent.

-13 Invalid decimal format An invalid decimal format is encountered, for
example, when executing SQLSetParamDecimal,
SQLInsertExecute, or SQLUpdateCurrent.

-14 Invalid currency format An invalid currency format is encountered, for
example, when executing SQLInsertExecute or
SQLUpdateCurrent.

-15 Invalid statement type for
this operation

SQLInsertEnd is called for a statement ID created
by SQLPrepareStatement or SQLClearStatement is
called for a statement ID created by
SQLInsertPrepare.

-1001 Out of memory There is insufficient memory to perform this
function.

-1002 Invalid connection The ConnectionId passed to the function is not
valid.

-1003 No bind list found The specified Bind List name does not exist.
-1004 No template found The specified Table Template name does not exist.
-1005 Internal Error An internal error occurred. Call Technical Support.
InTouch SQL Access Manager User’s Guide

Troubleshooting 45
Specific Database Error Messages
Oracle
Check your Oracle Server documentation for specific error messages and
solutions.

Microsoft SQL Server

Check you Microsoft SQL Server documentation for specific error messages
and solutions.

-1006 String is null Warning - the string read from the database is null.
This is only a warning sent to Wonderware Logger.

-1007 String is truncated Warning - the string read from the database is longer
than 131 characters and is truncated on a select. The
warning is sent to Wonderware Logger.

-1008 No Where clause There is no Where clause on Delete.
-1009 Connection failed Check Wonderware Logger for a more detailed

description of the failed connect.
-1010 The database specified on the

DB= portion of the connect
string does not exist

The specified database does not exist.

-1011 No rows were selected A SQLNumRows(), SQLFirst(), SQLNext(),
SQLLast, or SQLPrev() command was attempted
without executing a SQLSelect() or SQLExecute
command first.

-1013 Unable to find file to load SQLLoadStatement is called with a filename that
cannot be found.

Error Message Solution
You cannot have more than one
statement active at a time

You are trying to execute a SQL
command after executing a SQLSelect().
Execute a SQLEnd() to free system
resources from the SQLSelect() or; Use a
separate ConnectionId for the second
statement.

There is not enough memory
available to process the command

Try rebooting the client workstation.

Invalid object name table name The table name does not exist in the
database you are using. Try DB=database
name.

Result Code Error Message Description
InTouch SQL Access Manager User’s Guide

46 Chapter 5
Debugging SQL Access
The SQLTrace=1 flag defined under the [InTouch] section of the win.ini file is
useful for debugging SQL Access scripts. The new SQL Access module does
not use the trace file sqltrace.txt.
InTouch SQL Access Manager User’s Guide

Reserved Keywords 47
A P P E N D I X A

Reserved Keywords

SQL Access and ODBC
This appendix lists the keywords that are excluded from use for the SQL Access
Bind List and the Table Template, and the Open Database Connectivity (ODBC)
interface.

If a reserved keyword is used as the Column Name in a Bind List or Table
Template, an error message is generated in the Wonderware Logger. The type of
error generated depends upon the ODBC driver being used and the location in
which the keyword is found. For example, one of the most common errors made is
using DATE and TIME for Column Names in a Bind List or Table Template. To
avoid this error, use a slightly different name, for example, "aDATE" and "aTIME."

The reserved keywords define the Structured Query Language (SQL) used by
InTouch SQL Access. The keywords are also recognized by the specific ODBC
driver being used. SQL Access passes the SQL command containing one or more
reserved keywords to the ODBC.DLL file. If the SQL command cannot be
interpreted correctly, SQL Access generates an error message in the Wonderware
Logger.

The reserved keywords for SQL Access and ODBC are listed alphabetically
below:.

ABSOLUTE BY CONSTRAINT

ADA
ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BIT
BIT_LENGTH

CASCADE
CASCADED
CASE
CAST
CATALOG
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE COALESCE
COBOL
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION

CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
COUNT
CREATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURSOR
DATE
DAY
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFERRABLE
InTouch SQL Access Manager User’s Guide

48 Appendix A
DEFERRED
ENTF
DESC
DESCRIBE
DESCRIPTOR
DIAGNOSTICS
DICTIONARY
DISCONNECT
DISPLACEMENT
DISTINCT
DOMAIN
DOUBLE
DROP
ELSE
ENDEESC
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FALSE
FETCH
FIRST
FLOAT
FOR FOREIGN
FORTRAN
FOUND
FROM FULL
GET
GLOBAL
GO
GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IGNORE
IMMEDIATE
IN
INCLUDE
INDEX
INDICATOR
INITIALLY
INNER
INPUT
INSENSITIVE
EINFÜGEN
INTEGER
INTERSECT
INTERVALL
INTO

IS
ISOLATION
JOIN
KEY
LANGUAGE
LAST
LEFT
LEVEL
LIKE
LOCAL
LOWER
MATCH
MAX
MIN
MINUTE
MODULE
MONTH
MUMPS
NAMES
NATIONAL
NCHAR
NEXT
NONE
NOT
NULL
NULLIF
NUMERIC
OCTET_LENGTH
OF
OFF
ON
ONLY
OPEN
OPRN
OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS
PARTIAL
PASCAL
PLI
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
RESTRICT
REVOKE

RIGHT
ROLLBACK
ROWS
SCHEMA
SCROLL
SECOND
SECTION
SELECT
SEQUENCE
SET
SIZE
SMALLINT
SOME
SQL
SQLCA
SQLCODE
SQLERROR
SQLSTATE
SQLWARNING
SUBSTRING
SUM
SYSTEM
TABLE
TEMPORARY
THEN
TIME
TIMESTAMP
TIMEZONE_HOUR
TIMEZONE_MINU
TO
TRANSACTION
TRANSLATE
TRANSLATION
TRUE
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USAGE
USING
WERT
VALUES
VARCHAR
VARING
VIEW
WHEN
WHENEVER
WHERE
WITH
WORK
YEAR
InTouch SQL Access Manager User’s Guide

Reserved Keywords 49
InTouch
The following are reserved keywords for InTouch:

As
Call
Dim
Discrete
Integer
Message
Real
Return
RetVal
InTouch SQL Access Manager User’s Guide

50 Appendix A
InTouch SQL Access Manager User’s Guide

51
Index

A
About this Manual 6

B
Bind List 16

create new 16
delete 19
modify 18
Tag Browser 17

BindListName 23, 34
Building queries dynamically 38

C
Column Name 18
Commands

Table Template 22
Configuring a Bind List 16
Configuring a Table Template 20
Configuring SQL Access Manager 15
ConnectionID 34
ConnectString 34
CSV 5, 23

D
Data Types Supported 13
Database 5
Databases Supported 11

Microsoft Access 12
Microsoft SQL Server 11

deleting a Bind List 19
deleting a table template 23
Delim Function 19
Delimiters 19

E
ErrorMsg 34
Executing extended SQL Statements 39

F
FileName 34
Functions

SQLAppendStatement 25
SQLClearParam 26
SQLClearStatement 26
SQLClearTable 26
SQLCommit 26
SQLConnect 11
SQLCreateTable 27
SQLDelete 27
SQLDisconnect 28
SQLDropTable 28
SQLEnd 28
SQLErrorMsg 28
SQLExecute 28
SQLFirst 28

SQLGetRecord 28
SQLInsert 28
SQLInsertEnd 28
SQLInsertExecute 29
SQLInsertPrepare 29
SQLLast 29
SQLLoadStatement 29
SQLManageDSN 29
SQLNumRows 30
SQLPrepareStatement 30
SQLPrev 30
SQLRollback 30
SQLSelect 30
SQLSetParamChar 31
SQLSetParamDate 31
SQLSetParamDecimal 31
SQLSetParamFloat 31
SQLSetParamInt 32
SQLSetParamLong 32
SQLSetParamNull 32
SQLSetParamTime 33
SQLSetStatement 33
SQLTransact 33
SQLUpdate 33
SQLUpdateCurrent 33
Using 25

L
Logging Date and Time to an Oracle Date Field 10

M
MaxLen 35
Microsoft Access

Connection Requirements 12
Data Types Supported 12, 13

Microsoft SQL Server
Connection Requirements 11
Data Types Supported 12

Mircrosoft SQL Server
Data Types Supported 13

modify a Bind List 18
modifying a table template 22
Modifying extended SQL Statements 38

O
ODBC Administrator Program 7
ODBC Compliant 7
ODBC.INI 8
Online manuals 6
Oracle

Data Types Supported 13
OrderByExpression 35

P
Parameter

BindListName 34
ConnectionID 34
InTouch SQL Access Manager User’s Guide

52
ConnectString 34
ErrorMsg 34
FileName 34
MaxLen 35
OrderByExpression 35
ParameterNumber 35
ParameterType 35
ParameterValue 36
Precision 36
RecordNumber 36
ResultCode 36
Scale 36
SQLStatement 36
StatementId 36
TableName 36
TemplateName 36
WhereExpression 37

ParameterNumber 35
Parameters 34
ParameterType 35
ParameterValue 36
Precision 36

Q
Queries

Building Dynamically 38
Complex 38

QuickScripts 37

R
Reading SQL Statements from a File 38
RecordNumber 36
Reserved Keywords 47
Result Code Error Messages 43
ResultCode 36, 43

S
Scale 36
Specific Database Error Messages

Microsoft SQL Server 45
Specifying Complex Queries 37
SQL Access Manager Introduction 5
SQL Access Manager Overview 15
SQL Function format 25
SQL Parameters 34
SQL.DEF 5, 23
SQLConnect 11
SQLErrorMsg 43
SQLInsert 19
SQLSelect 30
SQLStatement 36
SQLUpdate 19, 33
StatementId 36
Structured Query Language 5
Supporting Stored Procedures 41

T
Table Template 20

create new 21
delete 23
modify 22

Table Template Command 22
Table Template Name 21, 24
TableName 36
Tag Browser 17
Tagname.FieldName 18
TemplateName 36
Troubleshooting 43
Troubleshooting SQL Functions 43

U
Using Microsoft Access 12
Using Microsoft SQL Server 11
Using Special Delimiters 19
Using SQL Functions 25
Using SQL Functions in InTouch 37

W
WhereExpression 37
Wonderware Technical Support 7
InTouch SQL Access Manager User’s Guide

	SQL Access Manager User’s Guide
	Invensys Systems, Inc.
	Contents
	SQL Access Manager
	Introduction
	About this Manual
	Assumptions

	Technical Support
	ODBC Compliant

	Configuring and Connecting Databases
	Using Oracle 8.0
	SQLConnect() Format
	Logging Date and Time to an Oracle Date Field

	Using Microsoft SQL Server
	Configuring the Client
	SQLConnect() Format

	Data Types Supported

	Using Microsoft Access
	SQLConnect() Format
	String Length

	Data Type Values for Supported Databases
	Oracle
	Microsoft SQL Server
	Microsoft Access 2000

	Configuring SQL Access Manager
	SQL Access Manager Overview
	Configuring a Bind List

	Using Special Delimiters
	Configuring a Table Template
	The SQL.DEF File

	Using SQL Functions
	SQL Functions
	Function
	SQLAppendStatement(ConnectionId, SQLStatement)
	SQLClearParam(StatementId, ParameterNumber)
	SQLClearStatement(ConnectionId, StatementId)
	SQLClearTable(ConnectionId, TableName)
	SQLCommit(ConnectionId)
	SQLConnect(ConnectionId, ConnectString)
	SQLCreateTable(ConnectionId, TableName, TemplateName)
	SQLDelete(ConnectionId, TableName, WhereExpr)
	SQLDisconnect(ConnectionId)
	SQLDropTable(ConnectionId, TableName)
	SQLEnd(ConnectionId)
	SQLErrorMsg(ResultCode)
	SQLExecute(ConnectionId, BindList, StatementId)
	SQLFirst(ConnectionId)
	SQLGetRecord(ConnectionId, RecordNumber)
	SQLInsert(ConnectionId, TableName, BindList)
	SQLInsertEnd(ConnectionId, StatementId)
	SQLInsertExecute(ConnectionId, BindList, StatementId)
	SQLInsertPrepare(ConnectionId, TableName, BindList, StatementId)
	SQLLast(ConnectionId)
	SQLLoadStatement(ConnectionId, FileName)
	SQLManageDSN(ConnectionId)
	SQLNext(ConnectionId)
	SQLNumRows(ConnectionId)
	SQLPrepareStatement(ConnectionId, StatementId)
	SQLPrev(ConnectionId)
	SQLRollback(ConnectionId)
	SQLSelect(ConnectionId, TableName, BindList, WhereExpr, OrderByExpr)
	SQLSetParamChar(StatementId, ParameterNumber, Value, Length)
	SQLSetParamDate(StatementId, ParameterNumber, Value)
	SQLSetParamDateTime(StatementId, ParameterNumber, Value, Precision)
	SQLSetParamDecimal(StatementId, ParameterNumber, Value, Precision, Scale)
	SQLSetParamFloat(StatementId, ParameterNumber, Value)
	SQLSetParamInt(StatementId, ParameterNumber, Value)
	SQLSetParamLong(StatementId, ParameterNumber, Value)
	SQLSetParamNull(StatementId, ParameterNumber, Type, Precision, Scale)
	SQLSetParamTime(StatementId, ParameterNumber, Value)
	SQLSetStatement(ConnectionId, SQLStatement)
	SQLTransact(ConnectionId)
	SQLUpdate(ConnectionId, TableName, BindList, WhereExpr)
	SQLUpdateCurrent(ConnectionId)

	SQL Parameters
	BindList
	ConnectionID
	ConnectString
	ErrorMsg
	FileName
	MaxLen
	OrderByExpression
	ParameterNumber
	ParameterType
	ParameterValue
	Precision
	RecordNumber
	ResultCode
	Scale
	StatementId
	SQLStatement
	TableName
	TemplateName
	WhereExpression

	Using SQL Functions in InTouch QuickScripts
	Specifying Complex Queries
	Building Queries Dynamically
	Reading SQL Statements from a File
	Modifying Extended SQL Statements
	Executing Extended SQL Statements
	Supporting Stored Procedures

	Fetching Values into InTouch Tags
	Persisting InTouch Tags into Database Field Values
	Implications of the Data Updating Rules
	Unintentional Conversion of NULL Values into Zeros or Empty Strings
	Unintentional Insertion of Zeros or Empty Strings into a Table

	Troubleshooting
	Troubleshooting Functions
	Result Code Error Messages

	Specific Database Error Messages
	Debugging SQL Access

	Reserved Keywords
	SQL Access and ODBC
	InTouch

	Index

