Local I/O

Introduction

This chapter provides information on how to create a new Project, connect to the PLC and download the Project to the PLC. This Project will include Local I/O.

Local I/O modules are on the same rack as the M580.

They are the most basic type of I/O and the easiest to configure.

To simplify I/O mapping most of the M580 I/O modules are configured via a Device DDT.

Exercise - Configure Local I/O

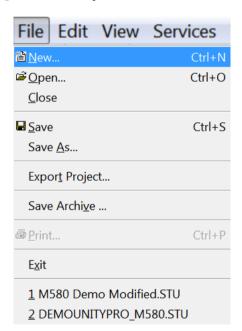
Learning Outcomes

By the completion of this exercise the student will:

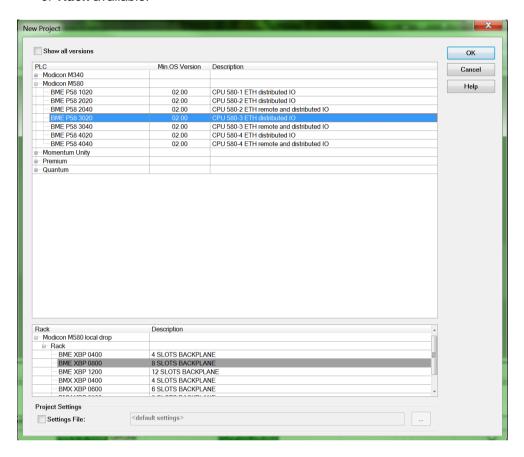
- > Create a new M580 application
- ➤ Configure a local I/O
- ➤ Name and use a Device DDT variable
- > Check the status of the local I/O drop

Equipment Required

To complete this exercise on a PLC the student will need


- > One M580 PLC (any CPU)
- ➤ A compatible rack and power supply
- ➤ A DDO1602

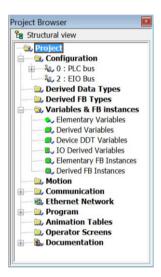
Create a new Project


i. Using the Windows Start Menu open **Unity Pro**:

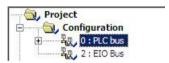
Start » All Programs » Schneider Electric » So Collaborative » Unity Pro » Unity Pro XL

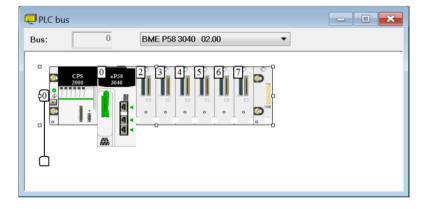
ii. Create a **New Project** by selecting **File** » **New** from the Unity Pro menu, or clicking the **New Project** button on the toolbar.

iii. Select the appropriate **M580 Processor** and **Rack** according to the equipment available. Or select any option if there isn't an **M580 Processor** or **Rack** available.



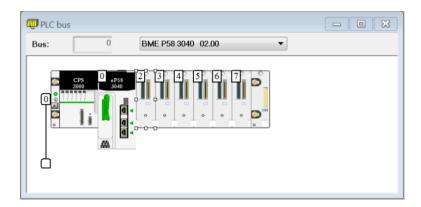
iv. Click the **OK** button to create the application.

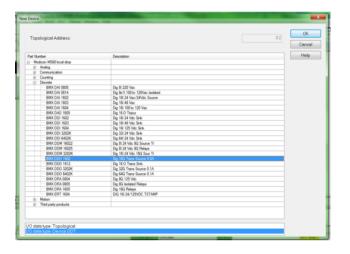

Unity Pro will create the new project and populate it with default items.


The **Project Browser** will display to show the project contents.

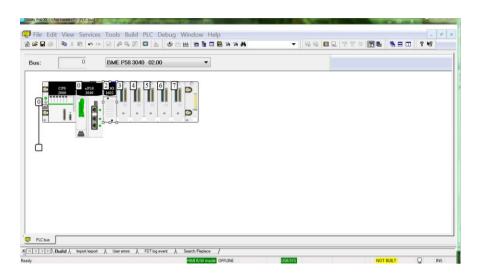
v. Double-click the **0: PLC Bus** item from the **Project Browser.**

The Local Rack will be displayed, pre-populated with the CPU and the Power Supply.

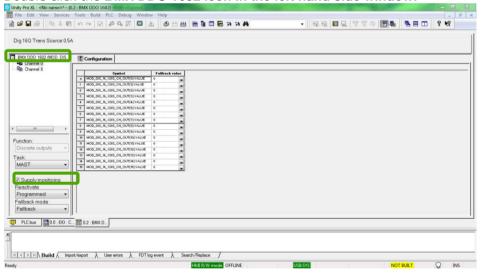



Note the addition of the new Ethernet slot in Blue on the image of the Rack.

Add the DDO Module to the Local Rack.

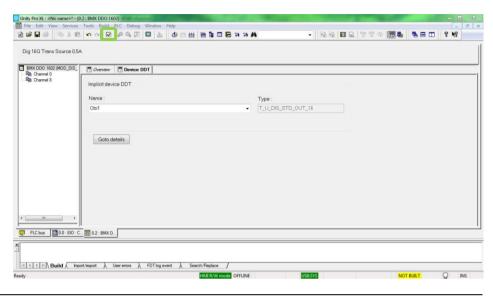

 Double-click the spare slot representing the physical location of the BMX DDO 1602 module.

- ii. From the **New Device** window, select the **Discrete** group and then select the **BMX DDO 1602** module. Make sure that the **I/O data type is Device DDT** at the bottom.
- iii. Click the **OK** button.



The module appears in the Local Rack.

Name the DDO 1602 Device DDT


- i. Double-click the **BMX DDO 1602** module.
- ii. In the module's window, un-tick **Supply monitoring**.
- iii. Double click the BMX DDO 1602 icon in the left hand side window.

Choose any name, it can be changed anytime.

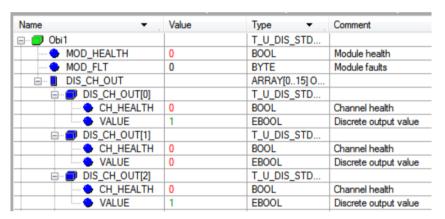
- iv. Select the **Device DDT** Tab, rename the module Obi1.
- v. Validate the changes, by clicking the tick box.

Create a Test Section

- i. Create a new ST Section under the Master (MAST) Task called test.
- ii. Type in the following code:

```
FOR i:=0 TO 15 BY 2 DO
    Obi1.DIS_CH_OUT[i].VALUE := TRUE;
END_FOR;
```

(create the variable i as an Integer)


- iii. This code will turn on every even output.
- iv. Build the application.

Note: The syntax of device DDT outputs.

Observe the DDO 1602 Device DDT

- i. Transfer and run the application (either to Simulation mode or Standard mode if the equipment is available).
- ii. In the project browser, double click **Variables & FB instances**.
- iii. Right click **Obi1**, and initialise a new animation table.
- iv. Click the + to extend the structure.
- v. Extend the **DIS_CH_OUT** item.
- vi. Finally extend a few channels and check their states.
- vii. Odd numbers should be OFF, and even numbers should be ON, as on the picture:

viii. Save the project.

Check the DDO 1602 Device Outputs (Hardware Required)

- i. The Hardware described at the beginning of the exercise is required to complete this section.
- ii. Check that every other output is ON as in the picture:

Note:

If I/O is red, it probably means that Supply monitoring in "3 name your DDDT" is unchecked.